
HIVE: A DISTRIBUTED SYSTEM FOR VISION PROCESSING

Amir Afrah, Gregor Miller, Donovan Parks, Matthias Finke and Sidney Fels

Human Communication Technology Laboratory
University of British Columbia, Vancouver, BC, Canada

ABSTRACT

We have built a novel vision processing system architec-
ture called Hive. Hive fills a gap in the vision middleware by
providing mechanisms for simple setup and configuration of
distributed vision computation. Hive facilitates communica-
tion between independent cross-platform modules via an ex-
tensible protocol, allowing these distributed modules to form
a vision processing pipeline. A plug-in interface allows gen-
eral software to be represented as Hive modules: e.g. drivers
for hardware devices such as cameras or implementations of
particular vision algorithms. The modules are set up as a
peer-to-peer network which allows for automated data trans-
fer, callbacks and synchronization. We describe the architec-
ture, communication protocol, plug-in interface and control
system for the modules. A distributed face tracking system
demonstrates the simplicity and flexibility for creating com-
plex distributed vision applications using Hive.

Index Terms— Computer Vision, Distributed Systems,
Middleware, Architecture

1. INTRODUCTION

In recent years, there has been much activity from the vi-
sion processing community on creating advanced algorithms
for video analysis in applications such as surveillance, indus-
trial vision and entertainment. These algorithms aim to find
precise and efficient methods for extracting meta-data from
streams of images, based on a set of criteria. The complexity
of dealing with the variability and volume of vision data often
leads to algorithms that are quite computationally expensive.
The increasing progress in this field has encouraged a contin-
ued need for vision system development in order to prototype
and evaluate algorithms. Since system development is usu-
ally not the foremost concern when developing vision appli-
cations, proof of concept systems are often developed in an
ad-hoc fashion resulting in systems that are application spe-
cific and generally not robust. The lack of a standard appli-
cation programming interface (API) for vision system devel-
opment is forcing vision researchers and developers to tackle
many system development issues prior to focusing on their
primary goal.

The three major issues facing vision system developers

can be categorized as follows. First, the lack of abstractions
for dealing with physical devices such as cameras, files and
processing platforms leads to significant low-level develop-
ment efforts. For example, even simple tasks such as ob-
taining images from a camera are not trivial primarily due to
the large variability of video data sources. This issue is fur-
ther complicated when dealing with multiple heterogeneous
sources and systems that require source-device communica-
tion.

Second, the continued need for increasing performance is
not met by general purpose processors. Many vision algo-
rithms can be executed on massively parallel processing sys-
tems which current CPUs do not support. Although very ef-
ficient at executing sequential code, in image processing ap-
plications where the volume of data is very high and paral-
lelism can be effectively exploited, the performance of se-
quential CPUs quickly degrade and other parallel, distributed
platforms such as FPGAs and GPUs have significant advan-
tages [1, 2]. Unfortunately, taking advantage of these more
effective platforms requires significant development effort.

Third, the lack of standardization and modularity of code
(platform dependency and connectivity issues) results in sig-
nificant re-development effort. Due to the lack of a uniform
framework much of vision algorithm development is project
specific, providing no simple method for re-use. These limi-
tations have had a great negative impact on the vision process-
ing community by increasing development time and limiting
unified development.

Taking these problems into account, we have designed
Hive based on a layered architecture that addresses the nec-
essary abstraction, performance and standardization require-
ments of vision system development. Hive’s architecture al-
lows for creating a solution that is scalable and portable. Fig-
ure 1 shows a simple application using Hive. The camera is
connected to the network using a Hive interface on the source
drone (or module), which is subsequently tied to the proces-
sor drone to compute results from the image data and send
them back to the controlling application.

2. RELATED WORK

Vision system development issues have been identified and
addressed for a number of years. There has been efforts to

978-1-4244-2665-2/08/$25.00 c©2008 IEEE

Fig. 1. This is an example swarm set up using Hive to accom-
plish a vision processing task. The network camera is inter-
faced to Hive using Drone 1 (the source), which is connected
to Drone 2 (the processor) by the application. The application
then collects the results from Drone 2.

standardize image acquisition such as Video4Linux and IIDC
for IEEE 1394 cameras (FireWire)[3, 4]. Video4Linux pro-
vides standardized access to video devices by including an
API in the kernel, but this solution is inherently platform spe-
cific. Solutions such as IIDC have been successful in stan-
dardizing a specific subset of camera devices that use a par-
ticular bus (i.e. firewire) however it has yet to spread to the
vast majority of other video sources such as network cameras,
capture cards, USB cameras, and pre-recorded video.

Open Source Computer Vision (OpenCV) is a set of li-
braries that provide a function based approach for tasks and
algorithms in computer vision[5]. OpenCV provides easy
methods for accessing image files and higher level algorithms
however it does not support issues involved in building vision
systems i.e. dealing with source details or means for distri-
bution etc. Implementation of Hive modules could rely on
OpenCV for functionality.

Generally speaking, improvement in processing efficiency
has been addressed by increasing parallelism. Various hard-
ware acceleration methods have been proposed to exploit par-
allelism in vision algorithms. Solutions such as programmable
hardware (FPGAs), GPUs and multi-core systems can lead to
great performance boosts at the cost of significant develop-
ment effort to use them effectively. This inhibits adoption by
general vision researchers and developers. There exists a sig-

nificant trade-off between development time, resources and
expertise that determines performance gained.

Distributed systems have also been used for increasing
computational performance. Existing libraries and standards
for distributing general processing tasks include Message Pass-
ing Interface (MPI) and Common Object Request Broker Ar-
chitecture (CORBA)[6, 7]. MPI provides abstractions for dis-
tributing processing over a cluster of computers by explic-
itly controlling task division and timing. CORBA provides a
method for remote function calls via a client-server model.
Although these standards provide suitable mechanisms for
distribution of vision systems, they are overly complicated
and do not directly support vision systems.

CoreImage and CoreVideo by Apple Inc. provide a plugin-
based architecture for image processing that utilizes graphics
cards for hardware acceleration. This architecture provides a
set of low-level filters and operations that can be easily ac-
celerated using the GPU by aggregating their operations on
video streams. However, the CoreImage/CoreVideo do not
support flexibility for different implementation networks and
different hardware acceleration methods.

Jovanovic et al. present a middleware for distributed smart
cameras focusing on a policy based approach for reconfig-
uring a network of smart cameras for a variety of different
applications[8]. Detmold et al. present a middleware for dis-
tributed video survallance that manages much issues particu-
lar to survalance and large arrays of smart cameras[9]. These
middleware focus on particular applications and devices (ho-
mogeneous smart cameras) without addressing more diverse
applications requiring variety of different devices and sensors
which is necessary for researchers and developers of smaller
scale projects.

Aritas et al. present RPV, a programming environment for
real-time parallel vision processing. RPV creates a program-
ming model targeting the issues of managing data flow and
its corresponding processing[10]. RPV provides a method for
data gathering, pipelining, data and function parallel process-
ing with each processing module receiving, processing and
sending data. Although RPV does address the issue of ba-
sic control flow of data, it assumes a homogeneous cluster
of processors and it fails to address data source and proces-
sor management as well as more complicated data flow and
non-uniform synchronization.

There has been efforts toward creating systems targeting
similar issues in robotics and haptics research. RTPM YARP
and Player are two frameworks that support distributed pro-
cessing for controling robots [11, 12]. YARP is an open source
set of platform independent libraries and protocols that fa-
cilitate communication between different modules. YARP
focuses on a communication methodology that follows P2P
fashion, however it does not support many of the specific vi-
sion system requirements such as uniform access and con-
figuration of service modules. Player defines standard proto-
cols and provides a multi-threaded framework that facilitates

communication between multiple devices and clients. This
architecture fits well with sensors and control routines for
robotics however a more flexible communication paradigm is
required for vision processing that allows for different distri-
bution and synchronization methods. RTPM is an architecture
for distributed realtime collaborative haptic applications [13].
RTPM provides a middleware for development of realtime
haptics networks using remote procedure call based commu-
nication protocl. This system is similar to Hive however based
on a much more focused client based network model.

Layered architectures have successfully provided abstrac-
tion and modularity of services applied to a variety of prob-
lems. Perhaps the most successful and well known layered
architecture is the Open Systems Interconnection Basic Ref-
erence Model (OSI model) that has standardized the TCP/IP
network protocol[14]. The OSI model abstracts various levels
of service required in networking into seven layers with stan-
dard interfaces. This architecture allows programmers to de-
velope portable modules that use networking services at var-
ious layers. We take inspiration from this architecture to ab-
stract various layers of functionality for distributed, parallel
video processing.

We recently became aware of another distributed system
using the name Hive[15]. We believe this does not pose a
problem since our version is specifically designed for vision
processing systems.

3. HIVE ARCHITECTURE

Hive has been developed to address a gap in current com-
puter vision middleware, as there exists no simple system for
distributed processing and development of reusable modules.
Specifically, the architecture of Hive has been designed to ac-
commodate a number of requirements:

• Abstraction and Encapsulation: the low-level function-
ality of the system should be hidden from the applica-
tion developer. This feature also allows for different
implementation approaches to accelerate performance.

• Plug-in interface: the interface to Hive from low-level
device implementation to application development is
kept simple without sacrificing flexibility and power.

• Flexible communication: the communication protocol
is extensible, flexible, and contains mechanisms for syn-
chronization between modules and automatic data trans-
fer.

• Cross-platform: Hive is intended to work on multiple
platforms, so basing the system on a layered architec-
ture allows for easier transfer to different systems.

A Hive system consists of a number of drones which are
connected together into one or more swarms by an applica-
tion. The term drone is used to describe a device or service

which uses Hive for communication and is remotely config-
urable. Drones can also be connected together to form a pro-
cessing pipeline, or swarm. Configuration and connection
commands are issued by applications to set up a swarm to ac-
complish a specific task. Applications can construct multiple
swarms in order to perform various complicated tasks simul-
taneously then collate the results. Applications and drones
are both Hive modules. The term user applies to the devel-
oper using Hive to construct a distributed system.

Although Hive has been designed to allow general pur-
pose network pipeline systems, the main goal has been to ap-
ply it to computer vision systems. Swarms tend to begin with
a source drone such as a camera module which supplies im-
age data to the video processing pipeline (such as background
subtraction and object tracking drones). Multiple swarms can
be set up to process the same incoming data to retrieve differ-
ent information, or to perform the same task in a distributed
manner to speed up the rate of processing. Error handling
for distributed processing is built into drones as an exception
model, which can pause processing or be handled by the ap-
plication which controls the swarm.

Hive is based on the concept of encapsulated and dis-
tributed processing. By creating a Hive module which per-
forms a specific task (e.g. background subtraction), this mod-
ule can run in its own process independently of other modules.
It can then be connected by an application to a data source and
have its output connected to another drone. Drones can be
reused by different applications and can run on any computer
on a network. They can be upgraded or changed and as long
as the interface remains the same, they can perform their task
transparently. There could also be multiple drones on a net-
work each doing the same task with different input sources.
Likewise, drones can easily live on a single multi-core com-
puter sharing memory and various internal buses. To provide
these features, Hive provides a layered set of functions.

3.1. Hive’s Layered Model

Applications and drones both sit on top of the layered archi-
tecture of Hive as shown in Figure 2. The architecture is com-
prised of four layers, two of which are shared between appli-
cations and drones. The layers are, from the bottom up:

• Transport: deals only with inter-communication of Hive
modules, using a peer-to-peer system. Each drone has
a server listening for new data, as well as a client for
sending data to other drones. The transport layer is also
used by applications for communication with drones.
Systems may be implemented over a network using pro-
tocols such as TCP/IP, or using shared memory and in-
ternal buses on a single machine.

• Event: forms the basis of the communication protocol
and data transfer methods by generalizing all commu-
nications to events. Both applications and drones have

Fig. 2. The layered architecture of Hive for both applications
and drones. They share transport and event functionality, but
diverge above these.

an event handling and callback system.

• Service: is a drone specific layer, supplying the inter-
face to Hive for user-written drivers to specific func-
tionality such as getting camera data or processing a
video stream. It also handles callback queueing, re-
source allocation and registration methods for drone
and swarm configuration.

• Manager: is an application specific layer, providing the
functionality required to control and configure drones
and swarms. It also contains all the functionality of
the service layer except it does not provide configura-
tion methods (since applications are not configurable
by drones).

• Application / Driver: are the application programmer
defined sections which make up a Hive module. The
driver is the interface to Hive from a software imple-
mentation or from a hardware device, and the applica-
tion is the controller for drones.

We describe each of these in detail in the next subsections.

3.2. Hive Drones

A Hive drone is a reusable module with a clearly defined in-
terface which indicates what it expects to receive as input and
what it will produce as output. Drones can be linked together
to form swarms capable of performing complicated vision
tasks or distributing an intensive computation across multiple
processes. Drones must provide methods which allow con-
figuration of their internal state. A typical drone may be a
camera or a specific algorithm such as a face-recognizer as
we demonstrate below.

As described in Section 3.4, applications are in effect a
special kind of drone, as there can be more than one (although

they do not have direct control over each other) and commu-
nication is identical. However they have a superset of func-
tionality comprised of control and configure commands for
drones. Unlike drones, they do not have to provide methods
to customize their behaviour.

Error reporting is accomplished using an exception model
built into the Hive service layer. If an error occurs which a
drone is not able to recover from, it notifies the application by
sending an exception. Drones can be pre-configured to halt
all processing when an exception occurs, and resume when
told to by the application. Alternatively a drone can notify
the application, abandon the current state of operation and
resume from the next set of input data it receives.

3.3. Hive Swarms

One of the novel contributions of this work is the ability to
connect different drones together into swarms, demonstrating
the reusability of drones and the flexibility of the architecture.

Drones are designed as encapsulated processes (much like
a class in an object-oriented programming language) so that
they can be connected together to perform arbitrary tasks.
For example, if different drones are created for a camera,
background subtraction, object detection and gesture recogni-
tion, a gesture recognition system swarm can be constructed
through an aggregate of these drones. The same camera and
background subtraction drones could be used for an object
tracking swarm.

Drones are connected together by applications using con-
trol events. These are events which are processed inside the
event layer upon arrival and hidden from the user. Control
events can be one of two types: register and connect
(including their counterparts deregister and
disconnect).

A register event is sent by a drone (R) to request cer-
tain data from another drone (S). The register event is
processed by S by adding R to the table of receivers for that
event. This means that whenever S produces data correspond-
ing to this event type, R will be sent that event (with the data
or just as a notification). Registration can be done once for
streaming, or repeatedly using a synchronized model. If us-
ing the synchronized model, every time new data is sent the
receiving drone is removed from the list of registered receiv-
ing drones. The data transfer models are discussed in more
detail in Section 3.5.

A connect event is sent by an application to a drone,
instructing it to connect itself to another drone (which is done
via a register event). This is the mechanism used to con-
nect two drones together. By issuing multiple connect com-
mands to various drones, applications can construct swarms
built from two or more drones. Swarms can also be initial-
ized to work from the same source in a one-to-many scenario:
a single camera can be the source for many different process-
ing drones e.g. background subtraction and object detection

can execute simultaneously on the same image.
Control events are dealt with at the event layer so they re-

main hidden from the application programmer. As well, they
may be implemented peer-to-peer or through a single point
manager depending upon how Hive is implemented.

3.4. Hive Applications

Hive applications are the command and control centres for
drones and the swarms to which they belong. Applications
use the same transport and event handling mechanisms as
drones, but have additional methods for setting up swarms
and configuring individual drones.

An application connects receiver and sender drones to-
gether using the process described above. Applications can
also connect themselves to drones using the same process, al-
lowing them to receive final results and monitor progress.

Drone configuration is achieved via remote procedure calls
(RPC). The RPC sends a control event to the drone for pa-
rameter change with the parameter list, to which the drone
responds with a confirmation event signifying success or fail-
ure. The RPC called by the application blocks until the confir-
mation message is received. Hive will be extended in future
to allow simultaneous configuration of identical drones (or
drones which accept the same settings). A similar approach
is used for getting parameter settings of a drone; such as cam-
era parameters.

3.5. Hive Data Transfer Models

Data transfer is supported under two separate models, syn-
chronized and streaming.

Synchronized data transfer has been included to ensure a
processing pipeline operates at its capacity and does not waste
unnecessary bandwidth. Once a drone has been set up to re-
ceive data from another, it will request the next available data
from the source when it is ready. After receiving the data the
drone enters a ‘busy’ state for processing, and will automat-
ically request the next piece of data when it is finished. Any
data produced by the source in the interim is not sent to the
drone for processing.

As a simple example of synchronized data transfer, if a
camera is the source drone running at 30fps and an object
tracker is the processing drone running at 10fps, using syn-
chronized transfer ensures bandwidth is not wasted by send-
ing images across the network to the tracker when it cannot
process them. If more drones are included in the swarm,
this method slows the overall speed of the swarm to that of
its slowest drone, conserving bandwidth and reducing over-
load on individual drones. This does not affect the speed of
other swarms, and does not exclude the possibility of attach-
ing higher performance drones to other swarms to increase
overall efficiency.

There is some small overhead associated with this method,
since every new piece of data must be registered for by the re-

ceiving drone. However, the registration is typically only a
single packet of data which is negligible compared to the size
of an image.

Streaming data transfer is a low-overhead high-bandwidth
method, which requires a single registration at the beginning
of operation. In this model, a source drone continuously sends
data to the processing drone regardless of its state. This model
is designed for systems known to be capable of processing at
the required speed, but also for different forms of process-
ing, e.g. image-based systems benefit from the synchronized
method, but if pixel or scanline data is needed, this could eas-
ily be streamed across the network.

Both models allow for two possible callbacks types: one
where the transferred data is included in the call and another
that excludes data when being notified of an event, basically
creating a notification system. Notification is useful for appli-
cations wishing to monitor progress but not receive the data
itself. Both models are useful in different contexts and are
supported.

3.6. Hive Communication

All communication in Hive is event-based (including the im-
plementation of the RPC for configuration) and event han-
dlers are built into both drones and applications. There are
two separate data flows associated with the architecture, as
shown in Figure 3: receiving data to be processed, and send-
ing data produced by a drone. This section covers the process
associated with receiving and sending data.

3.6.1. Receiving

The path of incoming data in a drone begins with the Hive
Listener running in the transport layer, waiting for new data
from other drones or commands from applications. The en-
tire packet is read from the network and subsequently passed
up to the event layer. This is outlined in Figure 3(b). This
is the server-side operation of the module: the server only
receives data, never sends, because established connections
from a client interface do not connect to the client module’s
Listener. Therefore modules operate in client and server mode
concurrently

When the packet arrives at the event layer, the header is
inspected to discover which type of event is contained within:
events can either be control or user events. Control events are
used by Hive to set up swarms and configure drones, and are
hidden from the user (see Section 3.3 for more information).
User events are defined in the drone interfaces, and are used
to connect two drones together.

If the packet does contain a control event, the command
is processed in the event layer. If the event is classified as
user, the packet is passed up to the service/manager layer. As
in most event handling systems, callbacks are used to process
incoming events. Hive modules register callbacks at the start

Fig. 3. The flow across layers associated with sending (b) and receiving (c) data across the network.

of execution for specific events they expect to receive. These
are registered with the service layer which maintains a call-
back table. When an event arrives at the service layer from
the event layer, the event type is looked up in the callback
table to check the drone has registered for it (this is more of
a double check, since if an application connects two drones,
the event received should have a callback registered). The
data is put in a callback queue to be processed once the drone
has finished its current processing; this keeps the user-defined
functionality in a single thread and avoids data synchroniza-
tion issues.

3.6.2. Sending

The process of sending data is relatively less complicated
since all the receivers have registered for events. The data
flow is shown in Figure 3(c). When a drone produces data
of a specific kind, it passes it to the service layer where it is
wrapped as an event and passed to the event layer. The event
layer maintains a table of requests from other drones or appli-
cations for each kind of data the current drone produces. The
table of requests for this event type is checked by the current
drone to see which Hive modules have requested this data,
and the event layer sends the data to each one using the client
interface of the transport layer.

Hive::DeviceID dev_id(port);
Hive::RegisterCallback(Events::SET,

&Set);
Hive::RegisterCallback(Events::GET,

&Get);
Hive::RegisterCallback(Events::IMAGE,

&ProcessImage);
Hive::SetMain(&DroneMain);
Hive::StartDrone(dev_id);

Fig. 4. This C++ code snippet shows the code required to
set up a Hive drone. The code: sets up the device on a spe-
cific port (for the Hive Listener); registers functions to deal
with requests for set and get parameters; registers a function
to call when an image arrives; registers the main drone func-
tion which is called repeatedly by the Hive service layer; and
finally the drone is started with the device id.

3.7. Hive Layer Interface

The Hive API has been kept simple while maintaining flexi-
bility for general applications. Hive is accessed by supplying
a set of functions which are called when applicable by the
managing routines. Drones behave as stand-alone processes
and provide a main function (called DroneMain in Fig-
ure 4), set and get parameter functions, and define func-
tions as callbacks appropriate for specific data types (which
will arrive and be processed by the event handling system).
Applications provide a main function and a set of callbacks
to deal with exceptions and data from the drones that they are
interested in.

Each Hive module contains two active threads: one exe-
cutes the user-based functionality (within DroneMain and
ProcessImage in Figure 4), and the other operates the
Hive Listener and event handling system. Thread-safety is
maintained in user code by executing event callbacks in the
same thread as the main routine: events are queued as they
arrive, and the queue is processed when the main routine fin-
ishes its current processing.

3.8. Additional Language Support

Hive has been designed to be cross-platform, and where pos-
sible, work with other languages. The architecture contains
the language layer, an additional layer above the Manager /
Service layer which acts as a translator to other programming
languages. Hive has been implemented natively in C++, but
also contains a C interface and python bindings so that appli-
cations and drones can interoperate using pre-built executa-
bles or the python interpreter. It would be possible to change
the native implementation if necessary. Additional languages
can be added, with minimal development effort, through bind-
ings of the service layer.

4. PROOF-OF-CONCEPT FACE DETECTION
APPLICATION USING HIVE

This section describes the implementation of a face detection
application that has been developed using Hive. The face de-
tection Hive application uses two drones: a camera and a face
detector as described below. The computational complexity
of the face detection algorithm makes it a suitable candidate
for demonstrating the modularity and distribution properties
of the Hive system. The implementation of the Hive layered
architecture is in C++ and uses the TCP/IP suite of protocols
for communication, allowing devices to reside anywhere on
the network.

4.1. Axis Camera Drone

The source drone for the face tracking application is designed
to use the Axis 207 network camera. This camera is highly
configurable and exposes its services through an HTTP based

Fig. 5. Data flow between the different drones and the appli-
cation in the face detection system

API called VAPIX[16]. Using this API, the user is able to
receive image data and configure the camera’s many parame-
ters such as resolution, exposure, image format, compression
level etc. The Hive drone wraps the VAPIX API, providing a
convenient abstraction for the camera’s functionality.

In order to provide abstraction, the Hive module exposes
the functionality of the device to the service layer. The func-
tionality can be classified into two categories: configuring
parameters (including parameter retrieval) and getting image
data. The request to set or get parameters is initiated by a Hive
application drone through the manager layer, and the requests
are dealt with by the drone’s service layer. The routines to
handle these requests are registered as callbacks on the ser-
vice layer. The availability of image data is dictated by the
device, so the ‘Main’ method of the drone polls the camera
for new data.

4.2. Face Detection Drone

The face detection drone is a software routine that finds face
like patterns in images. The algorithm used for this module
is OpenCV’s haar-like feature detection[17]. This algorithm
scans sub-regions of the frame sequentially and at various
scales using the haar descriptors in order to find areas that
corresponds to a face. For this application high accuracy is
required and therefore a low scale factor is used, making this
operation computationally expensive.

The face detection module provides the following services:
configuring the haar-like features; accepting images from the
source; finally, processing the images to produce the size and
location of the faces in view. In addition to the parameter
configuration callbacks, the face detection drone registers an
additional callback to deal with incoming data from a source.
This callback routine decodes the incoming jpg image and

sets a new frame flag indicating that there is new data to be
processed. The face detection routine operates in the main
method, which checks the new frame flag and starts process-
ing if it is set. Once the routine completes, it creates a new
event with the annotated image. The event is propagated to
the event layer and sent to any drone or application that has
requested the data.

4.3. Face Detection Application

The goal of the Hive Face Detection Application is simply
to display the face detection results. To accomplish this task
the application needs to: declare and configure the drones;
establish data flow amongst the drones; receive and display
the results from the drones.

The raw data is generated by the Axis camera drone, which
is sent to the face detection drone for processing. Results are
sent to the application for viewing. This data flow is estab-
lished by the application, which connects the face detector
drone (the receiver) input to the camera drone (the sender)
’new image’ event. It then connects itself to the ’processed
frame’ event of the face detector drone. In our proof-of-
concept system, the face detection drone is set to receive raw
images from the Axis 207 camera synchronously (request per
frame). The application receives data via a user-registered
callback once the processed frames from the face detection
drone are available. The application callback fills in a dis-
play buffer and calls the display function that displays the
processed image using OpenGL and the Graphic Library Util-
ity Kit (GLUT). Figure 6 shows the output of the Hive face
tracking system. For this proof-of-concept, the Axis Camera
Drone was running on Windows XP, and the Face Detection
Drone and Face Detection Application were running on a PC
with Linux operating system (Ubuntu 7.10).

4.4. Results

The images in Figure 6 show the results of the face detec-
tion system running on Hive. The scene conditions (the back-
ground and subjects) were kept as constant as possible in or-
der to minimize the variability in performance due to external
factors. Our interest was not to optimize the face-detection al-
gorithm, but to see how Hive can be reconfigured simply and
provide the ability to easily distribute processing. Using a sin-
gle drone to process the images on average gave a rate of 2.3
frames per second. Adding a second drone, and moving the
processing drones to a different machine from the application
and source drone, resulted in an improved rate of 4.4 frames
per second. Spawning additional drones on other machines
would increase the throughput of the system, and the minimal
overhead involved requires augmenting the application to use
the new drones.

5. CONCLUSIONS AND FUTURE WORK

We have presented Hive, a novel middleware for vision pro-
cessing systems. We have discussed the architecture of Hive
and its ability to provide mechanisms and abstractions to en-
able capture and processing of vision data through a modular,
flexible and plug-in architecture. Using our proof-of-concept
application, we have demonstrated that a single vision sys-
tem based on the Hive architecture can run on multiple PCs
with non-homogeneous platforms. Although the current im-
plementation of Hive is designed for large and distributed sys-
tems we are working on a light version of Hive that is more
suited for single machine use by modifying the transport layer
to support inter-process communication by using the internal
high speed buses on a single computer.

6. REFERENCES

[1] D. Arita, Y. Hamada, and R. Taniguchi, “A real-time dis-
tributed video image processing system on pc-cluster,”
in Proceedings of International Conference of the Aus-
trian Center for Parallel Computation(ACPC), 1999,
pp. 296–305.

[2] J. Fung and S. Mann, “Openvidia: parallel gpu com-
puter vision,” in Proceedings of ACM Multimedia, 2005,
pp. 849–852.

[3] Michael H. Schimek, Bill Dirks, Hans Verkuil,
and Martin Rubli, “Video for linux v4.12:
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf,” Tech.
Rep. 0.24, Linux, 2008.

[4] 1394 Trade Association, “1394-based digital camera
specification version 1.20.,” Tech. Rep., IEEE, 2007.

[5] Intel Corporation, Open Source Computer Vision Li-
brary: Reference Manual, Intel Corporation, 2001.

[6] Jeffrey M. Squyres, Andrew Lumsdaine, and Robert L.
Stevenson, “A cluster-based parallel image processing
toolkit,” in Proceedings of the IS&T Conference on Im-
age and Video Processing, 1995.

[7] Klas Nordberg, Per-Erik Forssen, Johan Wiklund,
Patrick Doherty, and Per Andersson, “A flexible run-
time system for image processing in a distributed com-
putational environment for an unmanned aerial vehicle,”
in In Proceedings of IWSSIP, 2002.

[8] M. Jovanovic and B. Rinner, “Middleware for dynamic
reconfiguration in distributed camera systems,” in Intel-
ligent Solutions in Embedded Systems, 2007 Fifth, 2007,
pp. 139–150.

[9] H. Detmold, A. Hengel, A. Dick, K. Falkner, D. S.
Munro, and R. Morrison, “Middleware for distributed

Fig. 6. Results of the face detection application running on a Hive system distributed across four drones, with one application
in control which displays the result (shown).

video surveillance,” in Distributed Systems Online,
IEEE, 2008, pp. 1–1.

[10] D. Arita, Y. Hamada, S. Yonemoto, and R. Taniguchi,
“Rpv: a programming environment for real-time par-
allel vision - specification and programming methodol-
ogy,” in Proceedings of 15th International Parallel and
Distributed Processing Symposium, 2000, pp. 218–225.

[11] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet an-
other robot platform,” in International Journal of Ad-
vanced Robotics Systems, 2006.

[12] B.P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard, G.S.
Sukhatme, and M.J. Mataric, “Most valuable player: a
robot device server for distributed control,” in Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, 2001, pp. 1226–1231.

[13] George Pava and Karon E. MacLean, “Real time plat-
form middleware for transparent prototyping of haptic
applications,” in Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, 2004. HAPTICS ’04.

Proceedings. 12th International Symposium on, 2004,
pp. 383–390.

[14] H. Zimmerman, “Os1 reference model-the is0 model of
architecture for open systems interconnection,” in IEEE
Transactions on Communications, 1980, pp. 425–432.

[15] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Kriko-
rian, and Pattie Maes, “Hive: Distributed agents for
networking things,” in Proceedings of ASA/MA’99,
the First International Symposium on Agent Systems
and Applications and Third International Symposium on
Mobile Agents, 1999.

[16] VAPIX, “Axis communication application program-
ming interface: http://www.axis.com,” Tech. Rep.,
AXIS, 2008.

[17] Rainer Lienhart and Jochen Maydt, “An extended set
of haar-like features for rapid object detection,” in Pro-
ceedings of International Conference on Image Process-
ing, September 2002, vol. 1, pp. 900–903.

