Uniform Image and Camera Access

Gregor Miller and Sidney Fels

Human Communication Technologies Laboratory
University of British Columbia

2366 Main Mall, Vancouver, BC, Canada V6T 174

{gregor, ssfels}@ece .ubc.ca

Abstract

We introduce a work-in-progress camera access scheme
we call the Unified Camera Framework. Attempts have been
made in the past to provide simple access to cameras, how-
ever these are generally OS specific or lacking in function-
ality. We present a novel interface which works across oper-
ating systems, and provides access to native images through
a descriptor. A unified configuration model is presented to
allow manipulation of camera parameters to the level each
camera supports. Validation of the ideas presented is given
in the form of a proof-of-concept implementation called the
All Seeing Eye.

1. Introduction

One of the most commonly performed tasks in computer
vision is also one that is often overlooked: access to image
data produced by cameras. There are various camera access
solutions available, but they are either specific to a package
[9], a particular camera type (IIDC or Point Grey Research)
or operating system (Quicktime™ DirectShow or Video-
ForLinux), or the functionality they provide is lacking in
basic access[4]. No solutions exist which provide an ab-
straction over camera access and configuration (above the
system level) which is extensible to existing drivers, or for
multiple cameras. This paper presents the Unified Camera
Framework (UCF), a novel camera access scheme for uni-
form camera access and configuration.

The central motivation of our work comes from the uni-
versal need for access to image data for the vision com-
munity and hobbyists, and the lack of a sufficient abstrac-
tion over existing technologies. We did not want to cre-
ate another standard since it is difficult to establish support
and unlikely to improve the current situation. Instead we
have created an abstraction layer over image and camera
access which supports existing standards, and can support
new cameras through its extensible framework. In order to

provide an access system with the necessary level of ab-
straction, the contributions of this work are: a generic im-
age description; uniform access to cameras across operating
systems and networks; and configuration of all cameras up
to their capabilities.

Individually these contribute to the field of computer vi-
sion and to camera technology in general, however when
combined they form a contribution to those not familiar
with camera access. For instance, by providing a generic
image header, any additional component in a system which
supports this description does not need to export image
specifics to users; all that is visible is the image as its own
object, without revealing details such as pixels or format
(although these are still available). The Unified Camera
Framework also contributes to computer vision researchers:
the same code will work across operating systems since the
access method is uniform, and cameras are accessible lo-
cally and on the network through the abstraction.

There have been many attempts to create open reposito-
ries of software supporting the vision community[4, 12, 5],
many of which support camera or image access. Unfor-
tunately these frameworks usually include a combination
of image capture, convenience utilities (such as image
I/0) and specific algorithms for image processing and
understanding contained within these libraries, and the
image format used for images is specific to that library.
This combination of features demonstrates that these
frameworks suffer from a lack of sufficient conceptual
organization of the vision problem’s constituent tasks.
Previous research has shown that lack of scope definition
and overlap across frameworks leads to a breakdown
in component reusability[8]. Therefore we propose the
following classification of scope for computer vision:

Access Retrieval of data

Transfer Mediation between modules

Convert Conversion into required format
Modify Applying filters, crop, transforms, etc.
Analyse Using vision to model a scene

Decomposing the problem in this way promotes code
re-use as well as focussing development effort on well-
defined parts of computer vision. Under this classification
we present UCF as a solution to the Access problem. The
other components in the computer vision pipeline have
various example solutions, such as Hive[2] for transfer,
ImageMagick for conversion and Corelmage™ for mod-
ification (although these last two also expand out of our
defined scope). As yet there are no known solutions to
the Analysis problem which limit their scope to analysis
while also being comprehensive and accessible to those not
specialised in computer vision techniques.

UCEF addresses the camera problem by defining the prob-
lems as increasing levels of access (image, interface, gen-
eral camera), and providing a solution for each. The im-
age access problem, described in Section 3.1, is that of de-
scribing a general image with a single header, to give ac-
cess to the various different types supported by digital cam-
eras. The next problem is getting access to a camera: many
frameworks exist for this purpose, but few work across sys-
tems or networks, or provide a configuration mechanism to
the level which each camera supports. We outline a uniform
access definition in Section 3.2 to capture images from any
camera, regardless of the platform or camera location. This
access method is designed to work with existing camera li-
braries, but allows specific drivers to be incorporated for
greater control. The final issue is accessing any available
camera, not just those local to the current machine. We sup-
ply a mechanism to incorporate networking schemes into
UCEF to allow access to any camera on the network which
is attached to a UCF server. This is designed to accommo-
date existing network technologies, so that cameras may be
accessed on existing networks. Our proof of concept imple-
mentation (which will be made freely available) of UCF is
called the All Seeing Eye, and is discussed in Section 4.

2. Previous Work

There have been a number of efforts to create standard-
ized formats for device manufacturers such as IIDC 1394-
based Digital Camera Specification[1] and VAPIX network
camera communication specification[3]. IIDC standardizes
access to camera devices that use FireWire as the camera-
to-PC interconnect. The IIDC standard specifies the camera
registers, fields within those registers, video formats, modes
of operation and controls. VAPIX is a HTTP protocol de-
veloped by Axis Corporation for communication with net-
work cameras via TCP/IP and the server client model. Us-
ing VAPIX the image data and camera configuration data in
VAPIX are sent as HTTP commands to and from the camera
device allowing uniform communication to any network de-
vice that implements VAPIX. Although these standard for-
mats present a theoretically valid approach, a convergence
of such standards by manufacturers is unlikely.

Video4Linux (V4L) is an example of a class of solutions
that attempt to provide seamless access to source via a uni-
form interface[11]. V4L provides standardized access to
video devices by including a kernel interface for video cap-
ture. This approach utilizes the Linux paradigm of treat-
ing all input and output communication as reads and writes
to a file and presents imaging devices as file handlers to
users. V4L defines standard types for devices and video
properties, and provides functions for opening and closing
devices, changing device properties, data formats, and input
and output methods that are implemented via system calls.
Using these defined types and methods, programmers have
access to the sources that are installed on a particular ma-
chine. Although V4L provides an abstraction over specific
camera protocols (e.g. IIDC) to the user quite effectively,
it has two drawbacks. It is platform dependent and there
is a barrier to adding support for new devices: in order to
add support for a new device (or class of devices) a devel-
oper needs to write kernel drivers which is a cumbersome
task and eliminates any hope of an opportunity for platform
independency.

QuickTime is a media framework developed by Ap-
ple Inc. for managing and handling various multimedia
requirements[10]. In addition to its ability to manage au-
dio, animation and graphics, QuickTime provides function-
ality for capturing, processing, encoding, decoding and the
delivery of video data through a framework called QTK:it.
QTK:it’s view of vision data is based on the concept of video
clips or as QuickTime calls it ‘movies’. QTKit provides a
set of classes for accessing vision data from sources (cap-
ture devices and files) that provide high-level abstractions
over the source’s low-level details. QuickTime also pro-
vides a very comprehensive, high-level mechanism for de-
coding and encoding video between a large number of dif-
ferent formats. There are two limitations with QuickTime’s
approach with respect to vision based system development.
The first issue is it does not provide a simple mechanism to
retrieve the images from inside the system once they have
been captured from the camera. The second limitation is
that it is restricted to certain operating systems and so is not
platform independent.

DirectShow[6] is a multimedia framework developed by
Microsoft to provide a common interface for managing mul-
timedia across many programming languages. DirectShow
is an extensible filter-based framework that provides data
capture, filtering, conversion and rendering of video and au-
dio data. DirectShow interfaces with the Windows Driver
Model in order to provide access to a large number of cap-
ture and filter devices. DirectShow insulates the application
programmer from the details of accessing these devices;
however, it also suffers from the same drawbacks as other
multimedia frameworks as it uses its own image format and
is not platform independent. Video4Linux, Quicktime and

Property

Type

Description of

Dimensions

Frame Number
Timecode
Synchronisation Number

Pixel Format
Number of Channels
Bits per Channel
Bits per Pixel

32-bit integer
32-bit integer
32-bit integer
32-bit integer

8-bit enum

8-bit integer
8-bit integer
8-bit integer

Width and height in pixels of the image

Frame number from originating camera

Time at which the frame was captured (may be synchronised)
Stores the synchronisation code when using multiple cameras
(can include camera group ID, camera number and sync code)
Encoding of pixel e.g. RGB, YUV422, floating-point
Number of channels per pixel in the image (3 for RGB, 4 for RGBA, etc.)
The precision of each channel

The number of bits per pixel

Encoding of image in memory, e.g. JPG, PNG, raw

Location of origin for indexing image

Image Format 8-bit enum
Origin 8-bit enum
Size 32-bit integer

Total Size* 32-bit integer

Size of the image data, not including this description
Size of the image data including this description

* This value can be computed based on other values on image reception to save space.
Figure 1. This table represents the description of a general image, designed to accommodate as many types of image as possible without

creating an extremely complicated structure.

DirectShow are all platform dependent and do not provide
any mechanism for data transport.

Java Media Framework (JMF)[7] is a cross-platform
multimedia framework similar to QuickTime that provides
capture, playback, streaming and transcoding of multimedia
in a number of different formats for Java developers. The ar-
chitecture of JIMF consists of three stages: input, processing
and output. The input stage provides routines for accessing
video data from capture devices, files and network inputs.
The processing stage deals with converting data using dif-
ferent codecs and adding common video effects. The output
stage deals with rendering the video data, saving it to disk
and sending the data via network. The fundamental limi-
tations of JMF are similar to the QuickTime framework, in
that it does not provide an abstraction over data transport.

The Open Computer Vision library (OpenCV)[4] is a
comprehensive and widely used vision processing frame-
work. The overall design of OpenCV relies on declar-
ing data type definitions for vision entities and providing
functions for operating on and extracting data from them.
OpenCV provides a framework for accessing data from
cameras installed on the system that utilizes an OS specific
framework such as V4L, with support for multiple cam-
eras although the authors had difficulty getting this to work.
Limitations such as lack of support for distribution, mul-
tithreading, limited source access and image data manip-
ulation, force developers to create custom frameworks (or
utilize other existing frameworks) that employ OpenCV as
a complementary framework.

Existing camera access frameworks usually define their
own image formats instead of a description which can ac-
cept multiple formats, as outlined in Section 3.1. Addi-
tionally, data transport is often ignored when implement-

ing vision system solutions. While all frameworks define
an interface to access the cameras, they target only a subset
of the available camera systems (usually entirely ignoring
network cameras) instead of providing a uniform access in-
terface which can retrieve images from any camera, as we
demonstrate how to do in Section 3.2.

3. The Unified Camera Framework

The contribution of this paper is the Unified Camera
Framework (UCF), which contains a number of components
to allow uniform and simple access to cameras, regardless
of type. There are three levels of access required to provide
an abstraction over source details:

1. Access to an image
2. Uniform access to a camera
3. Configuration of any camera up to its capabilities

Through these three access levels we provide solutions to
the main problems encountered by computer vision re-
searchers and developers when performing data capture
from cameras: getting access to images through a generic
image description; accessing and configuring any of the
available cameras through a single interface; and using the
same interface to access cameras which are not locally con-
nected by integrating it with a transport mechanism. The
immediate gain from these is uniform access to any camera
on the local machine, the network or connected to a ma-
chine which is on the network. Access to multiple cameras
simultaneously is supported (including synchronisation in-
formation). The following three sections discuss the levels
of access defined in the Unified Camera Framework.

3.1. Image Access

Our definition of image access is to provide a representa-
tion of many different formats which can be described suc-
cinctly. This allows applications to understand images in
the native formats from various cameras, or to provide a de-
scription of a format for conversion. We present a generic
image description to make image access transparent, to keep
the highest quality image available, and to provide a simple

means of image conversion. The image description must:
e Describe as many image formats as possible with a

minimal description
e Hold information on synchronisation and timecodes
(for multiple camera capture)

e Be extensible to allow for proprietary information and

support of future image types

The description can be transported as a header along with
the image data, and interpreted either by user code or by an-
other system which supports the description. For a sequence
of images the full header may only be sent once, and again
only if the image type changes. A shortened header of frame
number, timecode, synchronisation and size can be used for
each individual image.

The motivation behind the generic description is to allow
images from cameras supported through UCF to be received
in the camera’s native format. This is to maintain the highest
possible level of quality until the point is reached for pro-
cessing or, if needed, conversion. If a conversion is required
then it is hoped that by using this mechanism the number of
these is minimised; conversion between non-lossy formats
can still result in quality degradation (e.g. RGB to HSV or
YUV).

Providing a generic image description gives the first level
of access. From the description applications can accept
images in the native format of the camera and process in
this format if supported. Our general image description is
shown in Figure 1, along with the associated type of each
item. The number of bits assigned to each item is conser-
vative and could certainly be reduced. The general image
description can also provide a layer of abstraction from im-
age access. Given a set of components that support the UCF
image description a developer need only pass the image as
a whole among components. The details of the pixel types,
image format etc. are hidden from the developer through
the abstraction layer.

Some assumptions are made on the type of images pro-
duced by cameras. First, that camera data is supplied as
discrete frames and those frames are rectangular in nature:
while not true for range scanners, light field imagers etc.
there is usually an acceptable mapping (e.g. spherical or
cylindrical). Secondly, that individual pixels can be rep-
resented by a number of channels of a particular datatype.
This type could be integer or floating-point, which again al-
lows for data from range scanners, but also for a general raw

image type using floating-point notation (common in HDR
images or light maps for relighting constructed models in
computer vision). Third, that if the image is compressed
it is in one of the general formats such as JPEG or PNG
(although others could be added). Finally, the image is ex-
actly the dimensions stated, and the rows are not padded
with extra bytes (e.g. to make it a multiple of four) when
uncompressed.

The description is deliberately kept as small as possi-
ble, to try and represent the greatest number of image types
with the smallest description. The width and height are
stored as 16-bit integers within a single 32-bit value. The
frame number, timecode and synchronisation number are
provided mainly for use with multiple cameras, however
the frame number and timecode could also be useful in non-
synchronised systems (such as surveillance).

The pixel type of the image is described through a for-
mat (pre-defined, such as RGB or YUV422), the number of
channels, the number of bits per channel and the number of
bits per pixel. The format provides the pixel encoding under
which the other values are interpreted, e.g. YUV422 has a
different packing method to RGB. The number of bits per
pixel is provided to allow padding of the pixel storage to
round up to the nearest byte. This is to accommodate image
types from HD or SLR cameras which can have a higher
dynamic range such as 14 bits per pixel. For an RGB pixel,
this is 42 bits: if the number of bits per pixel is set to 42,
then there is no padding and each pixel will need to be ex-
tracted sequentially from the data; if the number of bits per
pixel is set to 48 then each pixel is contained within 6 bytes,
and can be addressed as such (and each channel extracted
from the 48-bit value).

The image format is defined to allow for different meth-
ods of compression of the image data, such as JPEG or
PNG. If the image is not compressed then the format is de-
fined as ‘raw’. The format may also indicate a progressive
compression scheme such as MPEG; the precise setup of
this would be done in the camera configuration (see Sec-
tion 3.2). The same system would also deal with any digital
rights management (DRM) the camera may use.

The origin is defined to take account of how the image
should be indexed, although this could be extended to a full
transformation description. The size of the image data is
given, since although it can be calculated for raw images
the size is not known for compressed images. The total
size, that of the image and the description, is provided al-
though this could be calculated separately. To save space a
set of general descriptors could be defined such as RGBS§
which would remove the need to specify the pixel format
and properties. This may not be an important issue, as the
descriptor is very small in comparison to a typical image
size, and only needs to be sent once for every stream of im-
ages. However when the image is passed to the user each

Property Description

Dimensions Width and height of desired image
Frame rate Frequency of image generation
Compression Type and level of compression
Pixel type Format and depth of pixel
Synchronization | E.g. timecode-based or frame-level

Figure 3. This table displays the parameters of a typical camera’s
configuration.

one will have a copy of the description (for possible use by
other components or by the user).

3.2. Uniform Access

The next level of access beyond images is retrieval of
those images from a camera. We have taken an object-
oriented approach and encapsulated the basic functionality
of a camera within a class. An abstract base class Camera
is defined with the basic methods for access to a camera,
summarised in Figure 2.

Each camera currently being accessed by the user is rep-
resented locally by an instance which is accessed via poly-
morphism through the Camera class. Classes inherited
from this base class implement the driver functionality of
these basic methods for the type of camera they define. For
example, a Firewire class could be defined to access all
firewire cameras through the IIDC interface. An instance
of this class would be returned to access a firewire cam-
era, although the type returned to the user is still Camera.
The Class method in the definition of Camera returns
the name of the inherited class. Using this (or through prior
knowledge from the UCF URL - explained in the next sec-
tion) the instance can be dynamically cast to the actual ob-
ject type. Then the user has full access to extended func-
tionality defined within the derived class.

Defining the camera interface this way also allows for
different levels of access to a camera. Basic users who de-
mand only an image and require very little configuration can
simply use the base class definition to access images from
the requested camera. More advanced users can use the spe-
cific class definition to configure the camera or utilise some
specific functionality. For example, Point Grey Research
(PGR) cameras can be configured extensively while a basic
webcam cannot. With uniform access the basic level access
may be used for both or a PGR driver class may be used to
access the advanced functionality of a PGR camera.

The base class definition provides for access to the cam-
era name (supplied at camera setup), the camera ID (a UCF
URL, explained in the following section), access to image
data, and basic camera configuration (parameters for config-
uration are shown in Figure 3). Not all cameras will support
even this basic set of parameters, in which case the method
will return an error code signifying which configuration re-

quest failed. The current configuration of a camera can also
be queried through the Conf i g method.

The base class interface is equivalent across platforms
which allows the same code to run on multiple operating
systems. Some definitions, such as that from PGR, are not
cross-platform due to the direct support of the camera SDK
(the FlyCapture SDK currently only supports Windows,
although an upcoming version will also support Linux).
However images from these cameras may still be accessed
through the basic interface via the Firewire class.

Finally, one of the main advantages of this interface is
that it provides an abstraction over the location of the cam-
era: users can access cameras on the local machine or else-
where on a network.

4. Example Implementation

We have developed an example implementation of the
Unified Camera Framework which we call the All Seeing
Eye (ASE). We have wrapped various camera systems under
ASE to access images from:

e VAPIX devices, e.g. Axis 206/207 IP cameras

e Windows supported devices, e.g. webcams or firewire,

through DirectShow

e Mac OS X supported devices, e.g. webcams or

firewire, through Sequence Grabber (SG is used to
maintain low-level support and language consistency)

e Logitech cameras under Linux using Quickcam drivers

e Point Grey Research cameras using FlyCapture drivers

e Cameras on Nokia phones (currently on N80 and N95)
Various issues have arisen through the implementation of
UCEF. An additional method (Initialize) was needed for the
cameras to support synchronization, as some cameras (such
as Point Grey Research) have additional Initialization re-
quirements which are simpler to support by keeping it sep-
arate from the Connect method.

Supporting devices on different platforms is not com-
pletely trivial: we took advantage of other cross-platform
libraries (such as boost) for getting access to network cam-
eras, but a static / dynamic library plug-in system was re-
quired to enable different cameras. As such we currently
have different versions of ASE depending on which cam-
eras are being used. For example, to use PGR cameras the
FlyCapture libraries are required, but if not using PGR cam-
eras it does not make sense to include them. Ideally we will
move to a dynamic plug-in architecture for future develop-
ment, so that only a single library is required.

We have tested frame rates on Axis 206/207 cameras,
iSight on Mac OS X and Logitech Quickcams attached
to Windows machines, at 640x480 and maintained 30Hz
operation on all cameras. The Axis cameras deliver 8-
bit per channel RGB images in JPEG format; DirectShow
on Windows delivers 8-bit per channel RGB RAW im-
ages; Sequence Grabber natively delivers YUV422 RAW

base class Camera
- String Name ()
- String ID() // For network access
- String Class() // inherited class

— Error Disconnect ()

— Parameters Config()
— Error Config(Parameters &)

// Pseudo-code definition of base class for Cameras

(e.g. Axis, Windows)
- Error Connect (ID &) // Allows simpler network integration

- Error Initialize() // Required for synchronization issues
- Error Get (Image &, bool) // boolean to signal blocking call or not
- Error Query(Capabilities &) // Discover capabilities of camera

Figure 2. Definition of the Camera class used to encapsulate the functionality of a basic camera.

images; All of these native formats are represented by
the image description, and on reception of the images our
viewer (or writer) converts these to 8-bit per channel RGB
RAW and display them on the screen (or write to disk).
Higher resolutions are possible with the iSight camera (up
to 1280x 1024), still at 30Hz, and this is configurable with
the UCF driver. The Nokia camera driver produces RAW
RGB files, however due to the limitations of the platform
videos are not retrievable; instead a user must point-and-
click to provide an image which is either stored locally on
the camera or sent across the network.

To access cameras across the network we chose to use
the freely available vision transport system Hive[2] as the
underlying network layer for ASE. Currently we can use
the interface to access cameras on other machines using a
hostname and port combination, and each camera on every
machine has its own small server. We are able to stream
images from cameras attached to remote machines at full
frame rate (30Hz) using Hive. Hive also deals with byte
ordering to ensure the data arrives in the correct format.

5. Conclusion

We have presented our novel camera access scheme, the
Unified Camera Framework. This brings together three lev-
els of access required for computer vision and camera sys-
tems: image access, which provides a mechanism to de-
scribe many different formats of images within one frame-
work; uniform access, where the same interface is used on
every platform to access a camera either locally or on the
network; and finally an extensible mechanism for configur-
ing cameras up to their capability.

We intend to extend this framework to support many
more cameras, and to provide an extended synchronisation
layer to provide more support for multiple cameras. We also
intend to develop an addressing scheme for cameras with an
auto-discovery mechanism to enhance usability. This im-

plementation of UCF will be made publicly available (along
with drivers to support ASE on the Hive transport system).
This is to benefit the wider vision community and also in
the hope that other researchers will help us add support for
more cameras and systems.

References

[1] 1394 Trade Association. IIDC 1394-based Digital Camera
Specification. Technical Report 1.3, 1394 Trade Association,
2000.

[2] A. Afrah, G. Miller, D. Parks, M. Finke, and S. Fels. Hive:
A distributed system for vision processing. In Proc. 2nd
International Conference on Distributed Smart Cameras,
September 2008.

[3] Axis Corporation. VAPIX API: http://www.axis.com/files/
manuals/VAPIX_3_HTTP_API_3_00.pdf, 2008.

[4] G. Bradski and A. Kaehler. Learning OpenCV: Computer
Vision with the OpenCV Library. O’Reilly Media, Inc., 1st
edition, October 2008.

[5] Camellia. http://camellia.sourceforge.net/.

[6] Direct Show. http://msdn.microsoft.com/en-us/library
/ms783354(VS.85).aspx.

[7] Java Media Framework API. http://java.sun.com/javase/
technologies/desktop/media/jmf/.

[8] A.Makarenko, A. Brooks, , and T. Kaupp. On the benefits of
making robotic software frameworks thin. In International
Conference on Intelligent Robots and Systems, 2007.

[9] National Instruments LabView:
http://www.ni.com/labview/.

[10] Quicktime. http://developer.apple.com/QuickTime/.

[11] M. H. Schimek, B. Dirks, H. Verkuil, and
M. Rubli. Video For Linux Two API Specification:
http://v412spec.bytesex.org/v4l2spec/v412.pdf. Technical
Report 0.24, Linux, 2008.

[12] VXL. http://vxl.sourceforge.net/.

