Uniform Access to the Cameraverse

Gregor Miller and Sidney Fels
Human Communications Technology Laboratory
University of British Columbia
Vancouver, Canada
{gregor,ssfels}@ece.ubc.ca

ABSTRACT

We introduce a novel framework for camera access which
provides a uniform interface to many different camera types
as well as a novel camera-oriented addressing scheme. Pre-
vious attempts to provide simple access to cameras are gen-
erally OS specific or lacking in functionality. We present the
Unified Camera Framework, a novel camera access scheme
which works across operating systems, provides an image
descriptor for access to native images and defines the camer-
averse using a unique addressing protocol. A unified config-
uration model is presented to allow manipulation of camera
parameters to the level each camera supports. Validation of
the ideas presented is given in the form of a proof-of-concept
implementation called the All Seeing Eye.

Categories and Subject Descriptors

1.4.1 [Computing Methodologies]: Image Processing and
Computer Vision—Digitization and Image Capture; 1.4.9
[Computing Methodologies]: Image Processing and Com-
puter Vision—Applications

1. INTRODUCTION

Accessing image data captured by cameras is one of the
most commonly performed tasks in computer vision yet it
is also one that is often overlooked. Various camera ac-
cess solutions are available, but they are either specific to
a package [10], a particular type (IIDC or Point Grey Re-
search) or operating system (Quicktime™ DirectShow or
VideoForLinux), or the functionality they provide is lacking
in basic access[4]. No solutions exist which provide an ab-
straction over camera access and configuration (above the
system level) which is extensible to existing drivers, or for
multiple cameras. This paper presents the Unified Camera
Framework (UCF), a novel camera access scheme for uni-
form camera access and configuration.

The universal need for access to cameras for the vision
community and hobbyists is our main motivation given the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICDSC 2010 August 31 — September 4, 2010, Atlanta, GA, USA
Copyright 20XX ACM 978-1-4503-0317-0/10/08 ...$10.00.

current lack of a sufficient abstraction over existing technolo-
gies. The creation of another standard is not ideal since it
is difficult to establish support and unlikely to improve the
current situation, so we have instead created an abstraction
layer over image and camera access which supports exist-
ing standards, and can support new cameras through its
extensible framework. The contribution of this work is a
set of abstractions which provide a uniform access method,
and include: a generic image description; uniform access to
cameras across operating systems and networks; configura-
tion of all cameras up to their capabilities; and an addressing
scheme to allow access to any camera device on the network.

This paper’s contributions add to the field of computer
vision and to camera technology in general, however we
combine them to form a contribution to those unfamiliar
with accessing camera data. For instance, by providing a
generic image header, any additional component in a sys-
tem which supports this description does not need to export
image specifics to users; all that is visible is the image as its
own object, without revealing details such as pixels or for-
mat (although these are still available). The Unified Camera
Framework also contributes to computer vision researchers:
the same code will work across operating systems since the
access method is uniform, and cameras are accessible locally
and on the network through the abstraction.

There have been many attempts to create open reposi-
tories of software supporting the vision community [4, 13,
5], many of which support camera or image access. Unfor-
tunately these frameworks usually include a combination of
image capture, convenience utilities (such as image I/O) and
specific algorithms for image processing and understanding
contained within these libraries, and the image format used
for images is specific to that library. This combination of
features demonstrates that these frameworks suffer from a
lack of sufficient conceptual organization of the vision prob-
lem’s constituent tasks. Previous research has shown that
lack of scope definition and overlap across frameworks leads
to a breakdown in component reusability[8]. Therefore we
propose the following classification of scope for computer vi-
sion:

Access Retrieval of data

Transfer Mediation between modules

Convert Conversion into required format
Modify Applying filters, crop, transforms, etc.
Analyze Using vision to model a scene

Decomposing the problem in this way promotes code re-use
as well as focussing development effort on well-defined parts

of computer vision. Under this classification we present UCF
as a solution to the Access problem. The other compo-
nents in the computer vision pipeline have various example
solutions, such as Hive[2] for transfer, ImageMagick for con-
version and Corelmage™ for modification (although these
last two also expand out of our defined scope). As yet there
are no known solutions to the Analysis problem which limit
their scope to analysis while also being comprehensive and
accessible to those not specialized in computer vision tech-
niques.

UCF addresses the camera problem by defining the prob-
lems as increasing levels of access (image, interface, general
camera), and providing a solution for each. The image ac-
cess problem, described in Section 3.1, is that of describing
a general image with a single header, to give access to the
various different types supported by digital cameras. The
next problem is getting access to a camera: many frame-
works exist for this purpose, but few work across systems or
networks, or provide a configuration mechanism to the level
which each camera supports. We outline a uniform access
definition in Section 3.2 to capture images from any camera,
regardless of the platform or camera location. This access
method is designed to work with existing camera libraries,
but allows specific drivers to be incorporated for greater con-
trol. The final issue is accessing any available camera, not
just those local to the current machine. We define an ad-
dressing scheme which incorporates existing networking ar-
chitectures into UCF to allow access to any camera on the
network. Our proof of concept implementation (which will
be made freely available) of UCF is called the All Seeing
Eye, and is discussed in Section 4.

A previous version of the initial work (descriptor, uniform
interface) has been presented as a work-in-progress[9] at a
workshop. Numerous changes have been made to the ab-
straction of the descriptor and interface and as such this is
a more complete version. This paper also includes a camera
access scheme which has not been presented before.

2. PREVIOUS WORK

There have been a number of efforts to create standardized
formats for device manufacturers such as IIDC 1394-based
Digital Camera Specification[1] and VAPIX network camera
communication specification[3]. IIDC standardizes access to
camera devices that use FireWire as the camera-to-PC inter-
connect. The IIDC standard specifies the camera registers,
fields within those registers, video formats, modes of oper-
ation and controls. VAPIX is a HTTP protocol developed
by Axis Corporation for communication with network cam-
eras via TCP/IP and the server client model. Using VAPIX
the image data and camera configuration data in VAPIX
are sent as HTTP commands to and from the camera de-
vice allowing uniform communication to any network device
that implements VAPIX. Although these standard formats
present a theoretically valid approach, a convergence of such
standards by manufacturers is unlikely.

Video4Linux (V4L) is an example of a class of solutions
that attempt to provide seamless access to source via a
uniform interface[12]. V4L provides standardized access to
video devices by including a kernel interface for video cap-
ture. This approach utilizes the Linux paradigm of treating
all input and output communication as reads and writes to
a file and presents imaging devices as file handlers to users.
V4L defines standard types for devices and video proper-

ties, and provides functions for opening and closing devices,
changing device properties, data formats, and input and out-
put methods that are implemented via system calls. Using
these defined types and methods, programmers have access
to the sources that are installed on a particular machine.
Although V4L provides an abstraction over specific camera
protocols (e.g. IIDC) to the user quite effectively, it has two
drawbacks. It is platform dependent and there is a barrier to
adding support for new devices: in order to add support for
a new device (or class of devices) a developer needs to write
kernel drivers which is a cumbersome task and eliminates
any hope of an opportunity for platform independency.
QuickTime is a media framework developed by Apple Inc.

for managing and handling various multimedia requirements[11].

In addition to its ability to manage audio, animation and
graphics, QuickTime provides functionality for capturing,
processing, encoding, decoding and the delivery of video
data through a framework called QTKit. QTKit’s view of
vision data is based on the concept of video clips or as Quick-
Time calls it ‘movies’. QTKit provides a set of classes for
accessing vision data from sources (capture devices and files)
that provide high-level abstractions over the source’s low-
level details. QuickTime also provides a very comprehen-
sive, high-level mechanism for decoding and encoding video
between a large number of different formats. There are two
limitations with QuickTime’s approach with respect to vi-
sion based system development. The first issue is it does
not provide a simple mechanism to retrieve the images from
inside the system once they have been captured from the
camera. The second limitation is that it is restricted to cer-
tain operating systems and so is not platform independent.

DirectShow[6] is a multimedia framework developed by
Microsoft to provide a common interface for managing mul-
timedia across many programming languages. DirectShow
is an extensible filter-based framework that provides data
capture, filtering, conversion and rendering of video and au-
dio data. DirectShow interfaces with the Windows Driver
Model in order to provide access to a large number of cap-
ture and filter devices. DirectShow insulates the applica-
tion programmer from the details of accessing these devices;
however, it also suffers from the same drawbacks as other
multimedia frameworks as it uses its own image format and
is not platform independent. Video4Linux, Quicktime and
DirectShow are all platform dependent and do not provide
any mechanism for data transport.

Java Media Framework (JMF)[7] is a cross-platform mul-
timedia framework similar to QuickTime that provides cap-
ture, playback, streaming and transcoding of multimedia in
a number of different formats for Java developers. The ar-
chitecture of JMF consists of three stages: input, processing
and output. The input stage provides routines for accessing
video data from capture devices, files and network inputs.
The processing stage deals with converting data using dif-
ferent codecs and adding common video effects. The output
stage deals with rendering the video data, saving it to disk
and sending the data via network. The fundamental limi-
tations of JMF are similar to the QuickTime framework, in
that it does not provide an abstraction over data transport.

The Open Computer Vision library (OpenCV)[4] is a com-
prehensive and widely used vision processing framework.
The overall design of OpenCV relies on declaring data type
definitions for vision entities and providing functions for op-
erating on and extracting data from them. OpenCV pro-

Property

Type

Description of

Dimensions

Frame Number
Timecode
Synchronisation Number

Pixel Format
Number of Channels
Bits per Channel
Bits per Pixel
Image Format
Origin

Size

Total Size*

32-bit integer
32-bit integer
32-bit integer
32-bit integer

8-bit enum
8-bit integer
8-bit integer
8-bit integer
8-bit enum
8-bit enum
32-bit integer
32-bit integer

Width and height in pixels of the image

Frame number from originating camera

Time at which the frame was captured (may be synchronized)
Stores the synchronisation code when using multiple cameras
(can include camera group 1D, camera number and sync code)
Encoding of pixel e.g. RGB, YUV422, floating-point

Number of channels per pixel in the image (3 for RGB, 4 for RGBA, etc.)
The precision of each channel

The number of bits per pixel

Encoding of image in memory, e.g. JPG, PNG, raw

Location of origin for indexing image

Size of the image data, not including this description

Size of the image data including this description

* This value can be computed based on other values on image reception to save space.

Figure 1: This table represents the description of a general image, designed to accommodate as many types
of image as possible without creating an extremely complicated structure.

vides a framework for accessing data from cameras installed
on the system that utilizes an OS specific framework such
as V4L, with support for multiple cameras although the au-
thors had difficulty getting this to work. Limitations such
as lack of support for distribution, multithreading, limited
source access and image data manipulation, force developers
to create custom frameworks (or utilize other existing frame-
works) that employ OpenCV as a complementary frame-
work.

Existing camera access frameworks usually define their
own image formats instead of a description which can accept
multiple formats, as outlined in Section 3.1. Additionally,
data transport is often ignored when implementing vision
system solutions. While all frameworks define an interface to
access the cameras, they target only a subset of the available
camera systems (usually entirely ignoring network cameras)
instead of providing a uniform access interface which can
retrieve images from any camera, as we demonstrate how to
do in Section 3.2.

3. THE UNIFIED CAMERA FRAMEWORK

The contribution of this paper is the Unified Camera Frame-
work (UCF), which contains a number of components to
allow uniform and simple access to cameras, regardless of
type. There are three levels of access required to provide an
abstraction over source details:

1. Access to an image

2. Uniform access to a camera

3. Configuration of any camera up to its capabilities
4. Access to any addressable camera

Through these four access levels we provide solutions to the
main problems encountered by computer vision researchers
and developers when performing data capture from cameras:
getting access to images through a generic image descrip-
tion; accessing and configuring any of the available cameras
through a single interface; and using the same interface to
access cameras which are not locally connected by integrat-
ing it with a transport mechanism. The immediate gain

from these is uniform access to any camera on the local
machine, the network or connected to a machine which is
on the network. Access to multiple cameras simultaneously
is supported (including synchronisation information). The
camera access protocol uses a name server to redirect queries
based in URI format to the camera device itself (which can
be accessed using the uniform interface). This mechanism is
performed by the UCF driver and is hidden from the user.
The following three sections discuss the levels of access de-
fined in the Unified Camera Framework.

3.1 Image Access

Our definition of image access is to provide a representa-
tion of many different formats which can be described suc-
cinctly. This allows applications to understand images in
the native formats from various cameras, or to provide a de-
scription of a format for conversion. We present a generic
image description to make image access transparent, to keep
the highest quality image available, and to provide a simple
means of image conversion. The image description must:

e Describe as many image formats as possible with a
minimal description

e Hold information on synchronisation and timecodes
(for multiple camera capture)

e Be extensible to allow for proprietary information and
support of future image types

The description can be transported as a header along with
the image data, and interpreted either by user code or by
another system which supports the description. For a se-
quence of images the full header may only be sent once, and
again only if the image type changes. A shortened header
of frame number, timecode, synchronisation and size can be
used for each individual image.

The motivation behind the generic description is to allow
images from cameras supported through UCF to be received
in the camera’s native format. This is to maintain the high-
est possible level of quality until the point is reached for
processing or, if needed, conversion. If a conversion is re-
quired then it is hoped that by using this mechanism the

number of these is minimized; conversion between non-lossy
formats can still result in quality degradation (e.g. RGB to
HSV or YUV).

Providing a generic image description gives the first level
of access. From the description applications can accept im-
ages in the native format of the camera and process in this
format if supported. Our general image description is shown
in Figure 1, along with the associated type of each item. The
number of bits assigned to each item is conservative and
could certainly be reduced. The general image description
can also provide a layer of abstraction from image access.
Given a set of components that support the UCF image de-
scription a developer need only pass the image as a whole
among components. The details of the pixel types, image
format etc. are hidden from the developer through the ab-
straction layer.

Some assumptions are made on the type of images pro-
duced by cameras. First, that camera data is supplied as
discrete frames and those frames are rectangular in nature:
while not true for range scanners, light field imagers etc.
there is usually an acceptable mapping (e.g. spherical or
cylindrical). Secondly, that individual pixels can be repre-
sented by a number of channels of a particular datatype.
This type could be integer or floating-point, which again al-
lows for data from range scanners, but also for a general raw
image type using floating-point notation (common in HDR
images or light maps for relighting constructed models in
computer vision). Third, that if the image is compressed
it is in one of the general formats such as JPEG or PNG
(although others could be added). Finally, the image is ex-
actly the dimensions stated, and the rows are not padded
with extra bytes (e.g. to make it a multiple of four) when
uncompressed.

The description is deliberately kept as small as possible,
to try and represent the greatest number of image types
with the smallest description. The width and height are
stored as 16-bit integers within a single 32-bit value. The
frame number, timecode and synchronisation number are
provided mainly for use with multiple cameras, however the
frame number and timecode could also be useful in non-
synchronized systems (such as surveillance).

The pixel type of the image is described through a for-
mat (pre-defined, such as RGB or YUV422), the number of
channels, the number of bits per channel and the number
of bits per pixel. The format provides the pixel encoding
under which the other values are interpreted, e.g. YUV422
has a different packing method to RGB. The number of bits
per pixel is provided to allow padding of the pixel storage to
round up to the nearest byte. This is to accommodate im-
age types from HD or SLR cameras which can have a higher
dynamic range such as 14 bits per pixel. For an RGB pixel,
this is 42 bits: if the number of bits per pixel is set to 42,
then there is no padding and each pixel will need to be ex-
tracted sequentially from the data; if the number of bits per
pixel is set to 48 then each pixel is contained within 6 bytes,
and can be addressed as such (and each channel extracted
from the 48-bit value).

The image format is defined to allow for different methods
of compression of the image data, such as JPEG or PNG. If
the image is not compressed then the format is defined as
‘raw’. The format may also indicate a progressive compres-
sion scheme such as MPEG; the precise setup of this would
be done in the camera configuration (see Section 3.2). The

// Pseudo-code definition
base class Camera
- String Name()
- String Address()
- String Driver()
- Error Initialize()
- Error Get(Image &, bool)
- Error Query(Capabilities &)
- Parameters Config()
- Error Config(Parameters &)

Figure 2: Definition of the Camera class used to en-
capsulate the functionality of a basic camera. The
name is ideally unique, such as a make/model plus
serial number; the address is the URI as specified
by the CAP in Section 3.3; the driver specifies how
UCF is interacting with the camera; initialization
is often required, especially for synchronization is-
sues; the most often used method is Get(), which
provides the latest image captured by the device;
finally, the configuration parameters are specified
through a query-based interface - this is extended
within each camera driver to provide more control
given a known camera type.

same system would also deal with any digital rights man-
agement (DRM) the camera may use.

The origin is defined to take account of how the image
should be indexed, although this could be extended to a full
transformation description. The size of the image data is
given, since although it can be calculated for raw images the
size is not known for compressed images. The total size, that
of the image and the description, is provided although this
could be calculated separately. To save space a set of gen-
eral descriptors could be defined such as RGB8 which would
remove the need to specify the pixel format and properties.
This may not be an important issue, as the descriptor is very
small in comparison to a typical image size, and only needs
to be sent once for every stream of images. However when
the image is passed to the user each one will have a copy of
the description (for possible use by other components or by
the user).

3.2 Uniform Access

The next level of access beyond images is retrieval of those
images from a camera. We have taken an object-oriented ap-
proach and encapsulated the basic functionality of a camera
within a class. An abstract base class Camera is defined with
the basic methods in Figure 2. Specific camera drivers can
then be defined as derived classes and polymorphism can
be applied to provide access to all camera types through a
uniform interface.

Defining the camera interface this way also allows for dif-
ferent levels of access to a camera. Basic users who demand
only an image and require very little configuration can sim-
ply use the base definition to access images from the re-
quested camera. More advanced users can use the specific
class definition to configure the camera or utilize some spe-
cific functionality. For example, Point Grey Research (PGR)
cameras can be configured extensively while a basic webcam

Property Description

Dimensions Width and height of desired image
Frame rate Frequency of image generation
Compression Type and level of compression
Pixel type Format and depth of pixel
Synchronization | E.g. timecode-based or frame-level

Figure 3: This table displays the parameters of a
typical camera’s configuration.

cannot. With uniform access the basic level access may be
used for both or a PGR driver class may be used to access
the advanced functionality of a PGR camera.

The base class definition provides for access to the cam-
era name (supplied at camera setup), the camera ID (a UCF
address, explained in the following section), access to image
data, and basic camera configuration (parameters for config-
uration are shown in Figure 3). Not all cameras will support
even this basic set of parameters, in which case the method
will return an error code signifying which configuration re-
quest failed. The current configuration of a camera can also
be queried through the Config method.

The base class interface is equivalent across platforms
which allows the same code to run on multiple operating
systems. Some definitions, such as that from PGR, are not
cross-platform due to the direct support of the camera SDK
(the FlyCapture SDK currently only supports Windows, al-
though an upcoming version will also support Linux). How-
ever images from these cameras may still be accessed through
the basic interface via the Firewire class.

Finally, one of the main advantages of this interface is that
it provides an abstraction over the location of the camera:
users can access cameras on the local machine or elsewhere
on a network using the Camera Access Protocol (CAP) and
UCF URLs to address the cameras. CAP is explained in
detail in the following section.

3.3 The Camera Access Protocol

The last component of UCF is the camera access proto-
col, which provides mechanisms to access any addressable
camera. We call the space of addressable cameras the cam-
eraverse, and use a uniform resource identifier (URI) format
to address these cameras.

CAP is an important contribution since it opens up access
to cameras not just attached to the local machine but also
any cameras attached to other machines which are accessible
over the network. We use the definition of network here
loosely, as it could mean TCP/IP over Ethernet, Bluetooth
or some other connection, and so we assume that a network
layer has been defined below UCF which may be used. An
additional advantage to using CAP is that it provides an
abstraction above programming language and platform, and
so cameras can be accessed from any platform on any system
which supports the UCF protocol.

The UCF URI is defined in the following format:

ucf://[gateway]/[sub-gateway] /[driver]/[camera ID]/

The possible values of the components in the URI are de-
fined in Figure 4. This works in much the same way as a
normal URL for the web, with a hostname, directory-like
structure and then an identifier, although it supports a few

ucf://local/usb/camera3/
ucf://capturebox.university.edu/firewire/camera0/
ucf://capturebox.university.edu/group/multil/

ucf://capturebox.university.edu/group/multil /
camera(/

e) ucf://floating/PGR/flea2/SN0375-0194/

f) ucf://camera.university.edu

Figure 5: Example URLs for addressing cameras.

more options. Our URI scheme name is “uct” to identify the
address as a unified camera framework destination.

The gateway provides the location of the machine which
hosts the UCF camera. This may be a hostname or IP
address for networked machines, or it can use the keyword
local to signify the local machine. There is one additional
option, floating: this mode can be used when the camera can
be uniquely identified (through a serial number for example)
and found through a discovery mechanism. This is especially
useful when a camera needs to be connected to a different
machine, since the URL for this camera does not change.
Figure 5e shows an example URL for a floating camera.

The sub-gateway is an optional argument in the URI, and
so does not need to be set for all camera addresses. How-
ever it introduces useful features such as addressing an entire
group of cameras with a single address (which can be sent to
a UCF name-server to retrieve the addresses of all cameras
in the group). This is shown in the example in Figure 5c¢
where the group multil is addressed. Through this it is also
possible to address specific cameras in the group, as shown
in Figure 5d. Groups are set up by the user in advance, and
provide a simple mechanism to work with multiple cameras.
The sub-gateway also allows cameras to be addressed by
their make or brand-name, after which they can be refer-
enced by model and/or serial number.

The driver is used to specify the driver used by the host
machine to access the camera, or the model of the cam-
era if using the brand/make in the sub-gateway. This not
only allows us to provide a unique path to the camera but
also a user-readable URI which is meaningful, since the user
can see how the camera is connected to that machine. The
example values shown in Figure 4 cover the kind of connec-
tions used by most cameras. The examples in Figure 5a
(local machine with usb camera) and Figure 5b (machine on
a university network with a firewire camera) demonstrate
the use of the accessor with connection type.

Finally, the camera ID identifies the specific camera be-
ing addressed which belongs to the previously defined gate-
way and accessor. This is required because machines often
have more than one camera on a particular bus (e.g. three
cameras on the firewire bus). This is also used for floating
cameras to specify the serial number, providing a unique
identifier with the make and model so that the machine is
not required if auto-discovery is supported.

To apply UCF in a real-world setting there needs to be
a name-server running which can translate URLs into con-
nections to a camera. Each machine that hosts one or more

Addressor | Example Values

Describes

gateway

camera ID port number, serial number

hostname, IP address, local, floating
sub-gateway | group, brand, (optional argument, possibly not set)
driver usb, firewire, network, PGR, VAPIX, model

Machine location

Multiple cameras
Connection and driver type
Specific camera

Figure 4: Variations in the components of a UCF URI. Those values that are italicized represent keywords
used in the URI, otherwise they are descriptive of the value used.

UCF cameras must run a name-server that performs two
tasks: allow queries from local or external sources about
the cameras currently connected locally or that the name-
server knows about (such as network cameras), and facili-
tates connections to any of these cameras. Additionally a
auto-discovery system is used for automatic update of cam-
era connections on the network, and therefore automatic
access to cameras given a unique floating URL.

The other option would be to have a UCF routing proto-
col, but this would require more low-level support. If UCF
were to be extended and accepted as an addressing system
in the future then it would need to be changed from sitting
on top of a network infrastructure (as it is now designed to
accommodate all existing cameras) to becoming a part of
the infrastructure. If this was the case, then the example in
Figure 5f could be used to address a UCF-supported camera
directly and retrieve images.

4. SYSTEM ARCHITECTURE

We have developed an example implementation of the
Unified Camera Framework which we call the All Seeing
Eye (ASE). The architecture of the system is based on the
definitions of UCF, with various additions to solve problems
which arose during implementation.

Our system is based on a camera Manager, which admin-
isters cameras on the local system and provides access to the
UCF name and image servers on the network. The Manager
also operates as a UCF name server on the local system for
other systems to access the cameras it administers. The im-
plementation is based on a plug-in driver system. A driver
in ASE is called an Assistant Manager, and provides basic
methods to the Manager such as providing a list of cameras
it can currently access as well as connection and disconnec-
tion of cameras (note that cameras in UCF are not capable
of connection or disconnection, since this is outside the scope
of a camera’s operation). The Manager calls on all the As-
sistant Managers at its disposal to create a list of all locally
accessible cameras which it can then provide to the user.

Using zeroconf (zero configuration) networking[14] the Man-

ager is able to discover other UCF name servers and provide
a list of accessible cameras on the network to the user. If
a camera address is known, the Manager can then take the
address and form a connection to that camera and provide
the Camera interface back to the user (the ASE camera is
identical to the UCF definition in Figure 2). Although the
images being captured are transported over the network the
interface is identical and so the networked operation is trans-
parent to the user.

We have taken an object-oriented approach and encapsu-
lated the basic functionality of a camera within a class. An
abstract base class Camera is defined with the basic methods
for access to a camera, summarized in Figure 2. Each camera

currently being accessed by the user is represented locally by
an instance which is accessed via polymorphism through the
Camera class. Classes inherited from this base class imple-
ment the driver functionality of these basic methods for the
type of camera they define. For example, a Firewire class
could be defined to access all firewire cameras through the
IIDC interface. An instance of this class would be returned
to access a firewire camera, although the type returned to
the user is still Camera. The Driver method in the definition
of Camera returns the name of the inherited class (named af-
ter the driver by convention). Using this (or through prior
knowledge from the UCF address) the instance can be dy-
namically cast to the actual object type. Then the user
has full access to extended functionality defined within the
derived class.

We have written drivers for various camera systems under
ASE to access images from:

e VAPIX devices, e.g. Axis 206/207 IP cameras

e Windows supported devices, e.g. webcams or firewire,
through DirectShow

e Mac OS X supported devices, e.g. webcams or firewire,
through Sequence Grabber (SG is used to maintain
low-level support and language consistency)

e Linux supported devices, e.g. webcams or firewire,
through Video For Linux

e Point Grey Research cameras using FlyCapture drivers

e Cameras on Nokia phones (currently on N80, N82 and
N95)

Various issues have arisen through the implementation of
UCEF. Initially we attempted to exclude the Initialize method
and perform all initialization on connection. However, it
was needed outside connection for the cameras to support
synchronization, as some cameras (such as Point Grey Re-
search) have additional initialization requirements which are
simpler to support by keeping it separate. For our imple-
mentation we chose to have a multi-threaded based system
for camera access, since it was impossible to maintain a cor-
rect frame number without this while grabbing images from
the camera. The capture thread is also useful for synchro-
nization and post-processing.

Supporting devices on different platforms is not trivial:
we took advantage of other cross-platform libraries (such
as boost) for access to network cameras, but a build-time
library plug-in system was required to enable different cam-
eras on different platforms. As such we currently have differ-
ent versions of ASE depending on which cameras are being
used. For example, to use PGR cameras the FlyCapture
libraries are required, but if not using PGR cameras it does

not make sense to include them. Ideally this will move to We intend to extend this framework to support many more

a dynamic plug-in architecture for future development, so cameras, and to provide an extended synchronisation layer
that only a single library is required. to provide more support for multiple cameras. This imple-

We have tested Axis 206/207 network cameras on Mac OS mentation of UCF will be made publicly available (along
X, Windows and Linux, various iSight cameras on Mac OS with drivers to support ASE on the Hive transport system).
X, Logitech Quickcams on Windows and Linux and mobile This is to benefit the wider vision community and also in
cameras on Nokia phones. Aside from the mobile platform, the hope that other researchers will help us add support for
all have been tested at 640x480 and maintained 30Hz op- more cameras and systems.

eration. The Axis cameras deliver 8-bit per channel RGB
images in JPEG format; DirectShow on Windows delivers 6. REFERENCES
8-bit per channel RGB RAW images; S?quen“f Grabber on [1] 1394 Trade Association. IIDC 1394-based Digital
OS X natively delivers YUV422 RAW images; all of these . . .

. . . Camera Specification. Technical Report 1.3, 1394
native formats are represented by the image descriptor, and L.

. . . . Trade Association, 2000.

on reception of the images our viewer (or writer) converts

these to 8-bit per channel RGB RAW and displays them on [2] Aj Afrah, ,G' Mlller, D. Parks, M kae’ and.S. Fels.
the screen (or writes to disk). Higher resolutions are possible Hive: A dlStrlbUte(i, system for vision processing. In
with the iSight camera (up to 1280x1024), still at 30Hz, and Proc. 2nd International Conference on Distributed
this is configurable with the ASE driver. The Nokia camera Smart Cameras, September 2008.

driver produces RAW RGB or JPEG files, and due to the [3] Axis Corporation. VAPIX API:

http://www.axis.com/files/

limitations of the mobile platform, we have two operating
manuals/VAPIX_3_ HTTP_API 3_00.pdf, 2008.

modes: one which captures high resolution images at a low

frame rate (1600x1200 at 1Hz) and another which captures [4] G. Bradski and A. Kaehler. Learning OpenCV:
low resolution at a higher frame rate (320x240 at 15Hz). Computer Vision with the OpenCV Library. O’Reilly

To access cameras across the network we chose to use the Media, Inc., 1st edition, October 2008.
freely available vision transport system Hive[2] as the under- [5] Camellia. http://camellia.sourceforge.net/.
lying network layer for ASE. By default we use port 2010 [6] Direct Show. http://msdn.microsoft.com/en-us/library
to represent “ucf” in our addressing scheme. Currently we /ms783354(VS.85).aspx.
can use the interface to access cameras on other machines [7] Java Media Framework API.
using zeroconf networking to identify UCF name servers, http://java.sun.com/javase/
which then provide the UCF address for each UCF image technologies/desktop/media/jmf/.
server attached to a camera. We are ajble to stream images [8] A. Makarenko, A. Brooks, , and T. Kaupp. On the
from cameras attached to remote machines at full frame rate benefits of making robotic software frameworks thin.
(30Hz) using Hive. Hive also deals with byte ordering to en- In International Conference on Intelligent Robots and
sure the data arrives in the correct format. Hive operates Systems, 2007.
on Windows, Mac OS X, Linux, Symbian and iPhone QSv [9] G. Miller and S. Fels. Uniform image and camera
therefore we can address cameras on any of these operating access. In Workshop on the Applications of Computer
systems and transfer images to any other platform. Vision. IEEE, December 2009.

[10] National Instruments LabView:

5. CONCLUSION http://www.ni.com/labview/.

We have presented our novel camera access scheme, the [11] Quicktime. http://developer.apple.com/QuickTime/.
Unified Camera Framework. This brings together four levels [12] M. H. Schimek, B. Dirks, H. Verkuil, and M. Rubli.
of access required for computer vision camera systems: Video For Linux Two API Specification:

http://v412spec.bytesex.org/v4l2spec/v412.pdf.
Technical Report 0.24, Linux, 2008.

[13] VXL. http://vxl.sourceforge.net/.

[14] Zeroconf. http://www.zeroconf.org/.

1. Image access through a descriptor which provides a
mechanism to describe many different types of images,
allowing for native high quality images to be passed
on without resampling, and automated conversion of
formats

2. Uniform access to cameras through a single interface
on all platforms to devices either locally or on the net-
work

3. Configuration through an extensible mechanism for tun-
ing camera parameters up to each device’s capabilities

4. The Camera Access Protocol, a novel scheme for ad-
dressing cameras and providing access to the camera-
verse

The introduction of a uniform interface to camera access
provides ease-of-use, portability and extensibility, and with
the addition of the Camera Access Protocol (from which we
can define the cameraverse) we also remove the restriction of
a particular programming language or system architecture.

