
Developer-Centred Interface Design for Computer Vision

Gregor Miller and Sidney Fels
Human Communication Technologies Laboratory

University of British Columbia
2332 Main Mall, Vancouver, B.C. V6T 1Z4

{gregor,ssfels}@ece.ubc.ca

Abstract

The rise in popularity of products and interfaces which
use computer vision has not been matched by a rise in us-
ability of frameworks which present computer vision meth-
ods to end-users, hobbyists, general developers or re-
searchers outside the field. This position paper presents a
work-in-progress set of design guidelines geared towards
developer-centred interfaces in order to help provide com-
puter vision in an intuitive and accessible manner. The
guidelines were developed through examination of previous
work in computer vision and human-computer interaction,
analysis of vision problems and inspiration from successful
abstractions in other fields, and are intended as a positive
reflection on the current state of computer vision interfaces.
Our key guideline states that developer interfaces to com-
puter vision must hide details regarding specific algorithms,
and we discuss the implications of frameworks which sup-
port this guideline.

1. Introduction

Computer vision has a new and important role on the
world technological stage with the advent of cheap cameras
and high-performance low-power processors. Examples of
its application are available throughout industry from sim-
ple face detection on compact cameras to advanced artic-
ulated modeling such as that on the Microsoft KinectTM.
However, implementation of a simple face detection sys-
tem requires advanced knowledge of existing algorithms
and their parameters, which is beyond the scope of general
developers. This has inspired our research theme, access
to computer vision: we would like computer vision to be
open and accessible beyond the confines of academia and
computer vision experts. While many algorithms are freely
and openly available, we do not consider these to be acces-
sible, due to the knowledge and expertise required to effec-

tively apply these to real-world problems. The direction of
research we are pursuing is to create a basis from which ac-
cess to computer vision techniques can be provided without
requiring specialist knowledge.

This paper’s contribution is a set of guidelines to help
framework architects design accessible and intuitive inter-
faces to computer vision methods for hobbyists, general de-
velopers and researchers who do not specialise in computer
vision. The key concept presented in our guidelines is that
to provide an accessible and intuitive interface, the details
of representation and method should be encapsulated within
a task-centred mental model. We also believe that targeting
an interface towards developers will lead to many simpler
and more intuitive interfaces for end-users, rather than re-
searchers providing a specific interface for end-users.

The development of our guidelines has been motivated
by four reasons: 1) a framework satisfying the guidelines
should provide access to those who are not experts in the
field; 2) advances in the state-of-the-art can be incorporated
into existing systems without re-implementation; 3) mul-
tiple back-end implementations become possible, allowing
development of hardware acceleration or distributed com-
puting; and finally, 4) the abstractions provide a mechanism
for general comparison of algorithms, thereby contributing
to researchers in the field as well as general users. This idea
has been applied successfully in many other fields, notably
the OSI reference model in networking [8] and OpenGL in
graphics [40], but none has yet been successful within com-
puter vision.

2. Previous Work

Many attempts have been made to develop computer vi-
sion or image processing frameworks that support rapid
development of vision applications. Image understanding
systems attempted to make use of developments in artifi-
cial intelligence to automate much of the vision pipeline
[21, 17, 5]. The Image Understanding Environment project

1

(IUE) [28] in particular attempted to provide high-level ac-
cess to image understanding algorithms through a standard
object-oriented interface in order to make them accessible
and easier to reuse. More recently the OpenTL frame-
work [31] has been developed to unify efforts on tracking
in real-world scenarios. All of these approaches essentially
categorise algorithms and provide access to them directly,
requiring developers to have expert knowledge of vision
methods and to deal directly with images and algorithms.

Visual programming languages that allow the creation
of vision applications by connecting components in a data
flow structure were another important attempt to simplify
vision development [18, 35]. These contained components
such as colour conversion, feature extraction, spatial filter-
ing, statistics and signal generation, among others. Declara-
tive programming languages have also been used to provide
vision functionality in small, usable units [39, 33], although
they are limited in scope due to the difficulty of combin-
ing logic systems with computer vision. While these meth-
ods provide a simpler method to access and apply methods,
there is no abstraction above the algorithmic level, and so
users of these frameworks must have a sophisticated knowl-
edge of computer vision to apply them effectively.

There are many openly available computer vision li-
braries that provide common vision functionality [1, 12,
42, 3, 34]. These have been helpful in providing a base
of knowledge from which many vision applications have
been developed. These libraries often provide utilities such
as camera capture or image conversion as well as suites of
algorithms, which has previously been shown to lessen the
effectiveness in application of the frameworks [20]. All of
these methods provide vision components and algorithms
without any context of how and when they should be ap-
plied, and so often require expert vision knowledge.

One previous attempt at overcoming the usability prob-
lems associated with image understanding is discussed
in the RADIUS project [11], which employed user-
manipulated geometric models of the scene to help guide
the choice of image processing algorithms. This operates at
a higher-level than the previously mentioned frameworks,
however it trades off power, breadth and flexibility to pro-
vide its abstraction. The guidelines we present in this paper
are aimed to be extensible enough to provide accessible vi-
sion methods across the entire field to a large audience.

There has been some design research in the related
field of machine learning. Fails and Olsen [10] devel-
oped an interactive tool which incorporates a simple paint-
ing metaphor for users to train a machine learning system.
The interface presents the image training set, the pixel-level
classification and re-classification options, which allows a
user to develop a detector for any subject, given enough rep-
resentative data. The system is presented at a high enough
level for users without experience in computer vision or ma-

chine learning to customise a general-purpose classifier; the
level of abstraction for this interface is significantly higher
than our target, which is to provide developers with an in-
terface to invoke computer vision methods. Additionally,
the breadth of possible techniques is limited to classifica-
tion and similar problems, whereas we would like to have a
general purpose vision framework.

A development environment called Gestalt [32] was cre-
ated to support the process of applying machine learning by
non-experts. Gestalt was developed on the basis that pro-
gramming with machine learning is significantly different
from traditional programming, and the authors describe one
of their key points that general support cannot be achieved
by hiding steps in the pipeline. While this may be true for
machine learning (and we do not suggest otherwise), we
contend that for computer vision the opposite is true: gen-
eral support cannot be achieved unless we hide the detailed
steps involved in computer vision methods. However, this
may come down to a level of detail issue: the conceptual
steps of a vision problem are important, and so the ideas
developed in Gestalt may be useful in this case. In general
however, we argue that an analysis of the complexities of
the problem can yield a description rich enough for develop-
ers to use as an interface to manipulate algorithms, without
ever explicitly dealing with them.

Klemmer et al. [16] introduced a toolkit targeted towards
the creation of tangible input systems, and used some ba-
sic computer vision methods to support the use of cameras.
The abstraction used is based on finding objects in the view
against a known background based on a segmentation and
then connected-components analysis. These objects are rep-
resented within the API and can be tied to various actions
or names, essentially allowing user-based classification at
the developer level. The developer is not interacting with
computer vision, but with the result of a computer vision
routine written by the authors, and is therefore targeting an
altogether different audience from the interfaces we are in-
vestigating.

Maynes-Aminzade et al. introduced Eyepatch [22], a
graphical user interface, with strong similarities to form
designers in Visual Basic, to provide users with a mecha-
nism to tie computer vision tasks to actions. The tasks were
constrained to classification and segmentation, using binary
classifiers to produce image regions as a result. The clas-
sifiers employed spanned a wide variety of tasks, ranging
from feature transforms to motion models to gesture recog-
nition, and allowed users to tie the results of these to appli-
cation actions. While this work is an important step towards
accessible computer vision, the target user is a high-level
developer and the range of applications is limited. We are
attempting to provide a set of guidelines for a framework as
wide-ranging and flexible as OpenCV but with the accessi-
bility and usability of OpenGL.

There have been no attempts to provide guidelines for
developer interfaces to computer vision, to our knowledge.
While computer vision is extensively used this is usually
through the use of a problem-specific library and often ex-
pert help. We would like to change this, and introduce new
vision frameworks which are accessible by a much larger
audience through abstractions based on our guidelines. We
have previously discussed a conceptual structure for com-
puter vision which may provide a more accessible frame-
work for users [24]: in conjunction with the guidelines we
present here this will allow researchers in HCI (and other
fields) and general developers to access sophisticated com-
puter vision methods without requiring expert vision knowl-
edge.

3. Computer Vision Interface Design
We are developing techniques to make computer vision

methods more accessible to a larger audience, expanding
from the current narrow set of academics and specialists.
Through our research in accessible computer vision we re-
alised there are a number of separate issues which must be
solved to provide an interface to vision methods for devel-
opers. To this end we have formulated a set of guidelines to
positively influence the design of developer-centred inter-
faces for computer vision. The guidelines are not validated
through studies; instead they have been collated through ex-
amination of previous work in computer vision, analysis of
vision problems, inspiration from successful abstractions in
other fields and some common sense. Note that whenever
we use the term user we are targeting a developer.

We shall begin by considering how the input and out-
put should be presented to the developer, followed by a dis-
cussion of how measurement schemes should operate and
finally how to provide the developer with access to algo-
rithms for particular types of problem. Throughout we en-
deavour to apply aspects of software engineering (such as
encapsulation), human-computer interaction and of course
computer vision. The inspiration for the guidelines comes
from our experience working within both vision and HCI
and a frustration from attempting to use existing computer
vision frameworks on a day-to-day basis.

As with any framework the input is an excellent place
to start, and one that is often overlooked in terms of de-
sign. Many vision algorithms require the input images to be
presented in a particular way. For example, some require
HSV colour space images for skin-colour [44], greyscale
images for intensity-based processing [43], rectified images
for depth or disparity calculations [13], etc. This problem is
not limited by any means to computer vision: until OpenGL
2.0 [40] images supplied for use as textures were required to
have power-of-two dimensions. While there are usually rea-
sons to do with efficiency or flexibility which override de-
sign concerns, as an interface to sophisticated elements we

believe it is important to remove issues such as algorithm-
required image format conversion or resampling from the
developer-space and concentrate developer effort on the ac-
tual problem they are trying to solve. This leads us to our
first developer-centric interface design element:

Guideline 1 The interface should not require special or-
dering, manipulation, conversion, filtering or any other
preparation of the input from the developer.

A simple solution to this guideline would be to document a
single image format for the interface and only accept images
of this type as input. If an algorithm requires a different for-
mat, it (or the framework) must perform the conversion. In
a similar vein, parameters of algorithms are often presented
in units based on the image resolution; e.g. if running a de-
tection in the image, one of the parameters is usually the
target’s size, and it is requested in pixels. While the idea
of size is sensible (to reduce the search space), requiring a
size in pixels from the user is counter-intuitive: if we were
to have two cameras, identical except for pixel density on
the sensor, then the size of the target would be the same rel-
ative to the sensor size, but the algorithm would require a
different size measured in pixels for each image.

Guideline 2 Measurements should be independent of im-
age resolution.

Some interfaces follow this guideline, such as OpenGL tex-
ture indexing which operates on the interval [0, 1] (termed
normalised device coordinates), but even popularly used
frameworks such as OpenCV [1] require pixel-based mea-
surements for detection (as shown in Figure 2(c) in the
cvSize method), and much of the stereo vision literature
operates using pixel-based units for comparison windows
[37] (which is quite odd given that they are essentially con-
structing these windows in 3D space, and the size of the 3D
window when defined in pixels would vary between cam-
eras [27]). This could be solved using normalised device
coordinates although care should be taken to preserve as-
pect ratio if this is important to the problem.

The idea that measurements not operate on arbitrary
scales such as image resolution, because this is not repre-
sentative of the concept, can be extended to apply to the in-
put and output of a computer vision interface. If the current
process requires or produces a particular concept encoded
as an image (such as a face, a colour, etc.) then the rep-
resentation should not include any part of the image which
does not correspond to the original concept.

Guideline 3 Region-based input or output should be con-
cisely representative of the conceptual task.

An example of this guideline being broken can be found
on almost any consumer digital camera: when employing
the face detection system for auto-focus etc. the detections

(a) Bounding boxes vaguely represent concepts (b) Ambiguous definition of concept

(c) Original Image (d) Subjective segmentation of (c), which directly
represents the concept

Figure 1. An illustration of representations used within computer vision: (a) and (b) demonstrate the use of bounding boxes to represent
concepts such as head, hand and foot, where each box includes content not representative of the concept. The box marked head on the
woman in (b) does not include her hair, illustrating an ambiguity in the definition of head (since hair is included in (a)). The segmentation in
(d) of the image in (c) is an example of a good representation of the concept they encode. However, this form of segmentation is subjective
(“what is a bike?”) and should be used with care. These images are examples from the test data set of the Visual Object Challenge [9].

are visualised as a box surrounding part of the face. If too
large, the boxes include regions of the image which are not
a part of the face; if too small, regions of the face are not
included (illustrated in Figure 1 (a) and (b)). While this is
likely a direct effect of the detection algorithm in use (since
most use a “contains-a” rather than an “is-a” classification
method [41]) it is technically feasible to further process the
output of the detector and produce a region with a closer
fit to the target concept (e.g. a skin-colour-based algorithm
[15]). There is also a more subtle issue with this guide-
line: if the task is to represent a person, it is often ambigu-
ous what should be included, as can be seen in Figure 1(b)
where not all of the subject’s hair is inside the bounding
box; for this example we would need to define head. Guide-
lines to specifically deal with this issue are often provided

for vision datasets [9] but not algorithms or interfaces (this
is addressed further in Guideline 8). We progress the idea of
concise representation further to break the commonly-used
link between the scene, a smooth and continuous 3D space
(ignoring time for now), and the image, an ordered set of
bounded 2D regularly discretised samples, since a concise
representation is not possible with a discrete basis:

Guideline 4 Representations of regions within images
should be continuous.

While it may appear counter-intuitive to use a continuous
representation when the images we are analysing are dis-
crete, we argue that from the user’s perspective the discrete
representation is irrelevant: the reason the images are under
analysis is to establish some model of the scene, and since

(a) Usage: facedetect --cascade=‘‘<cascade_path>’’ [filename|camera_index]

(b) cascade = (CvHaarClassifierCascade*)cvLoad(cascade_name, 0, 0, 0);

(c) CvSeq* faces = cvHaarDetectObjects(img, cascade, storage,
1.1, 2, CV_HAAR_DO_CANNY_PRUNING,
cvSize(40, 40));

Figure 2. Lines of code taken from the OpenCV face detection example. (a) demonstrates the method of execution, requiring a cascade as
input; (b) loads the cascade, an XML file over 23000 lines long containing the parameters of the detection algorithm (which is the result
of an extensive training process); (c) uses the cascade to detect the objects it has been trained on, in this case vertically-posed unoccluded
frontal faces. This example directly breaks Guidelines 2 (uses pixel-based measurement), 3 (result is a rectangle, not representative of the
concept), 5 (uses pixel-based representation) and 9 (requires developer use algorithms directly).
Source: http://opencv.willowgarage.com/wiki/FaceDetection/

the scene is continuous it seems logical that the representa-
tion should be too. Especially since in the case of computer
vision, the result is always a model (never an image) and
the model does not need to be discretely represented. The
process of converting a model into an image is the domain
of computer graphics, and so problems such as matting [4]
and image blending [2] are products of both fields.

Establishing Guidelines 2, 3 and 4 has led to one of our
most important results in the design of developer-centric in-
terfaces for computer vision:

Guideline 5 A continuous representation of the input
should be used.

This guideline may be controversial since pixels are well
understood by many, due to their presence as essentially
an industry standard in image manipulation or photogra-
phy packages, as well as universally used (and, we argue,
abused) in computer vision, but we believe they are not il-
lustrative for the application of computer vision methods.
This is partly motivated by the previous three guidelines,
but since pixels are area samples of projected light through
a lens, there are additional reasons to avoid them: the mea-
sured intensity of a single pixel can come from more than
one surface through a step-discontinuity, i.e. at the projec-
tion of the edge of a surface[45]; the properties of a pixel
(colour and position) are usually easier to manipulate when
treated as a point source rather than area sample, and in this
case the point’s colour value is often interpolated from ad-
jacent samples[6]; additional properties such as texture, de-
tail, shape, etc. are representable by regions but not directly
by pixels [29]; significant effort has been put into computer
vision algorithms for robust interest points [38] and features
[19, 7] which are closer to geometric entities and not accu-
rately representable as pixels.

As a short aside, we propose a similar idea for temporal
aspects of the interface for problems such as tracking:

Guideline 6 Representation of time should be continuous.

Algorithms operating in the spatio-temporal space typically
operate using frames as a basis for representation [31]. As
an implementation method this utilises all available infor-
mation but for a user it does not necessarily offer the most
intuitive access. Motion is continuous in time as well as
space and attempting to describe this discretely suffers from
largely the same issues as the spatial case. Particular events
observed over an interval (however large or small) rarely
align exactly with the instant or interval a particular im-
age was captured, and the result of the analysis may not
be frame-aligned either. In the multi-view case, if the shut-
ter release, exposure length and frame rate are not synchro-
nised (or genlocked) then observations will not be equiva-
lent across views which offers further motivation to use a
continuous representation.

Returning to the discussion of Guideline 5, we argue that
one of the reasons pixels should not be used as a developer-
centric representation is their lack of properties which re-
late to vision problems, such as shape or texture. Typ-
ically an algorithm will use some form of representation
which favours the conditions under which it operates, and
which will have its own set of properties. From the de-
veloper’s perspective a single representation that either has
these properties or can be transformed to produce them is
preferable.

Guideline 7 Image representation should be based on
developer-centric semantics.

We believe that the properties in the developer-space should
encode some semantic concept (such as colour or shape)
instead of anything algorithm-specific in order to maintain
generality and a coherent interface. The representation of
the image would then be based on these semantics. This is
a familiar concept in computer graphics: the scene model

has properties which are described in a space familiar to ev-
eryone, and not in the representation actually employed by
the algorithms used to render e.g. the scene has lights which
are defined by colour, intensity, position and type (spotlight,
directional, etc.) and the mechanics involved to render this
property of the scene are hidden from the developer [40].
Additionally, the behaviour of the properties in computer
graphics are precisely defined and well-documented, and
generally similar across the field. There are many terms in
computer vision which vary in meaning across publications
and even sub-topics of the field: segmentation can mean
a decomposition of the image into similar regions [36], or
a subjective clustering of regions into categories of object
(‘person’, ’cat’, etc.) [9]; ‘object’, ‘feature’ and ‘salient
points’ are a few examples where the intended meaning can
vary significantly, since the general meaning is vague.

Guideline 8 Image representations and computer vision
problems should be precisely defined and consistent.

A computer vision interface should have a single defini-
tion of each term used and precise documentation of the
intended meaning, process and solution, mainly to avoid
confusion but also to document the exact solutions avail-
able. Frameworks that provide algorithms often neglect to
provide consistent and concise definitions, usually because
they are collections of various algorithms contributed by
different vision researchers. These frameworks are excel-
lent and useful resources, but they are inaccessible to the
general developer, not just because of the previously dis-
cussed issues but also due to the complexity of the algo-
rithms themselves. Computer vision algorithms are often
difficult to understand and to apply robustly for those not
specialised in the field, since expert knowledge is often re-
quired to establish the conditions under which each algo-
rithm performs, to configure the specific parameters to cor-
rectly process the input and to debug the algorithm when
the result is not as expected [32]. There are many useful
repositories of computer vision algorithms [1, 31, 42, 3, 12]
but they require extensive training and expertise to under-
stand and use effectively. As an example, the excellent face
detection algorithm [41] in the OpenCV library [1] is cho-
sen by calling the method cvHaarDetectObjects and
passing in a parameter variable cascade which contains
the contents of an XML document over 23000 lines long
(the load method is shown in Figure 2(b) and the face de-
tection function is shown in Figure 2(c)). The example pro-
gram included with OpenCV is executed on the command
line, requiring the name of the XML file as shown in Fig-
ure 2(a). The XML document contains the result of training
a detector with positive and negative examples of faces, and
so calling the method with this training data creates a partic-
ular solution of the general algorithm to detect faces. There
are four other parameters passed in (excluding the image,

img and some temporary memory, storage) to control
the detection process. The complexity of using this method
to solve the apparently simple problem of detecting a face
in an image leads us to our next guideline:

Guideline 9 Developers should not be required to select
specific algorithms, or tune algorithm-specific parameters.

This is the most important guideline in this paper, and is the
central idea which should be used when defining interfaces
for access to computer vision. Understanding the details of
computer vision algorithms and knowing under which con-
ditions they operate most effectively requires expert knowl-
edge, extensive training and experience. Even within the
field, a computer vision expert in 3D reconstruction will
not necessarily know the best algorithm to use for articu-
lated tracking, or how to apply it effectively. We argue that
developers should not be burdened with the task of choosing
which algorithm to solve their problem and learning how to
tune the algorithm-specific parameters. Instead, a suitable
abstraction layer can be defined to act as the interface to
the algorithms. There are various ways to provide an ab-
straction, for example: through a pipelined set of modular
processing blocks [23] which could be presented through
an interface much like the one in Lego Mindstorms NXT;
through a very high-level abstraction where the developer
asks for a particular high-level problem to be solved (e.g.
registration, face detection, stereo reconstruction) and the
interface automatically selects the algorithm and computes
the parameters based on the input images [30, 14]; allow
the user to describe the problem conditions (what the im-
ages represent, which parts of them are important, how the
images differ, some general properties) and use this to infer
a suitable algorithm to apply [25, 26]. These abstractions
vary in flexibility and power and different versions would
be required for different user targets and for different prob-
lems. The most effective abstraction may be a combination
of these different approaches, with varying levels of detail
supporting the level of access required by the user. We be-
lieve this is the key to providing computer vision to a much
larger audience.

4. Conclusion
We have presented a new set of guidelines which we

argue should be satisfied by all developer-based computer
vision interfaces. Frameworks designed with our guide-
lines should provide intuitive and simple access to com-
puter vision methods for hobbyists, general developers and
researchers who do not specialise in computer vision. We
conclude that the most important guidelines to follow are
to avoid pixels as a means for representation (Guideline 5),
and to hide algorithmic detail from the developer (Guide-
line 9). Algorithms are the domain of specialists and we
argue that it is possible to apply them effectively through an

abstraction. We believe an abstraction based on a descrip-
tion of the problem space can allow automatic selection of
appropriate methods. While we have not determined our
guidelines’ validity through formal studies we have moti-
vated them through reason, literature review, analysis of ex-
isting frameworks and examining successful abstractions in
other fields. We intend to evaluate these with a set of ab-
stractions in the near future.

5. Acknowledgements
We gratefully acknowledge the support of NSERC, Bell

Canada, GRAND NCE, Vidigami Media Inc. and Avigilon
Corporation.

References
[1] G. Bradski and A. Kaehler. Learning OpenCV: Computer

Vision with the OpenCV Library. O’Reilly Media, Inc., 1st
edition, October 2008. 2, 3, 6

[2] M. Brown and D. G. Lowe. Recognising panoramas. Pro-
ceedings of the Ninth IEEE International Conference on
Computer Vision, 2:1218–1225, 16-16 Oct. 2003. 5

[3] Camellia. http://camellia.sourceforge.net/. 2, 6
[4] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A

bayesian approach to digital matting. In Proceedings of IEEE
CVPR 2001, volume 2, pages 264–271. IEEE Computer So-
ciety, December 2001. 5

[5] R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu. Borg:
A knowledge-based system for automatic generation of im-
age processing programs. IEEE Trans. Pattern Anal. Mach.
Intell., 21:128–144, February 1999. 1

[6] W. B. Culbertson, T. Malzbender, and G. Slabaugh. Gener-
alized voxel coloring. In International Workshop on Vision
Algorithms, Corfu, Greece, 1999. 5

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In In CVPR, pages 886–893, 2005. 5

[8] J. D. Day and H. Zimmermann. The OSI reference model.
In Proc. of the IEEE, volume 71, pages 1334–1340, 1983. 1

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2010. http://www.pascal-network
.org/challenges/VOC/voc2010/workshop/index.html. 4, 6

[10] J. Fails and D. Olsen. A design tool for camera-based inter-
action. In Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’03, pages 449–456, New
York, NY, USA, 2003. ACM. 2

[11] O. Firschein and T. M. Strat. Radius: Image Understanding
For Imagery Intelligence. Morgan Kaufmann, 1997. 2

[12] Gandalf. http://gandalf-library.sourceforge.net/. 2, 6
[13] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 3

[14] D. Jang, G. Miller, S. Fels, and S. Oldridge. User oriented
language model for face detection. In Proceedings of Inter-
national Workshop on Person-Oriented Vision. IEEE, Jan-
uary 2011. 6

[15] P. Kakumanu, S. Makrogiannis, and N. Bourbakis. A sur-
vey of skin-color modeling and detection methods. Pattern
Recognition, 40(3):1106 – 1122, 2007. 4

[16] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-
mache: toolkit support for tangible input. In Proceedings
of the SIGCHI conference on human factors in computing
systems, pages 399–406. ACM, 2004. 2

[17] C. Kohl and J. Mundy. The development of the image under-
standing environment. In Proc. 1994 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 443–447. IEEE Computer Society Press, 1994. 1

[18] K. Konstantinides and J. R. Rasure. The Khoros software
development environment for image and signal processing.
IEEE Trans. on Image Processing, 3:243–252, 1994. 2

[19] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91, Nov 2004. 5

[20] A. Makarenko, A. Brooks, , and T. Kaupp. On the benefits of
making robotic software frameworks thin. In International
Conference on Intelligent Robots and Systems, 2007. 2

[21] T. Matsuyama and V. Hwang. SIGMA: a framework for
image understanding integration of bottom-up and top-down
analyses. In Proceedings of the 9th international joint con-
ference on Artificial intelligence, volume 2, pages 908–915.
Morgan Kaufmann Publishers Inc., 1985. 1

[22] D. Maynes-Aminzade, T. Winograd, and T. Igarashi. Eye-
patch: prototyping camera-based interaction through exam-
ples. In Proceedings of the 20th annual ACM symposium
on User interface software and technology, UIST ’07, pages
33–42, New York, NY, USA, 2007. ACM. 2

[23] G. Miller, A. Afrah, and S. Fels. Rapid vision application de-
velopment using hive. In Proc. International Conference on
Computer Vision Theory and Applications, February 2009. 6

[24] G. Miller, S. Fels, and S. Oldridge. A conceptual structure
for computer vision. In Proceedings of Canadian Conference
on Computer and Robot Vision, May 2011. 3

[25] G. Miller, S. Oldridge, and S. Fels. Towards a computer vi-
sion shader language. In Proceedings of International Con-
ference on Computer Graphics and Interactive Techniques,
Poster Session, SIGGRAPH 2011. ACM, August 2011. 6

[26] G. Miller, S. Oldridge, and S. Fels. Towards a general ab-
straction through sequences of conceptual operations. In
Proceedings of International Conference on Vision Systems.
Springer, September 2011. 6

[27] G. Miller, J. Starck, and A. Hilton. Projective surface re-
finement for free-viewpoint video. In Proc. Conference on
Visual Media Production. IET, November 2006. 3

[28] J. Mundy. The image understanding environment program.
IEEE Expert: Intelligent Systems and Their Applications,
10(6):64–73, 1995. 2

[29] T. Ojala and M. Pietikinen. Unsupervised texture seg-
mentation using feature distributions. Pattern Recognition,
32(3):477 – 486, 1999. 5

[30] S. Oldridge, S. Fels, and G. Miller. Classification of im-
age registration problems using support vector machines. In
Proceedings of Workshop on the Applications of Computer
Vision. IEEE, January 2011. 6

[31] G. Panin. Model-based Visual Tracking: the OpenTL Frame-
work. John Wiley and Sons, 1st edition, 2011. 2, 5, 6

[32] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko,
and J. Landay. Gestalt: integrated support for implemen-
tation and analysis in machine learning. In Proceedings of
the 23nd annual ACM symposium on User interface soft-
ware and technology, UIST ’10, pages 37–46, New York,
NY, USA, 2010. ACM. 2, 6

[33] J. Peterson, P. Hudak, A. Reid, and G. D. Hager. Fvision:
A declarative language for visual tracking. In Proceedings
of the Third International Symposium on Practical Aspects
of Declarative Languages, PADL ’01, pages 304–321, Lon-
don, UK, 2001. Springer-Verlag. 2

[34] A. R. Pope and D. G. Lowe. Vista: A software environment
for computer vision research, 1994. 2

[35] Quartz Composer by Apple. http://developer.apple
.com/graphicsimaging/quartz/quartzcomposer.html. 2

[36] X. Ren and J. Malik. Learning a classification model for seg-
mentation. In Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on, pages 10 –17 vol.1, oct.
2003. 6

[37] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In-
ternational Journal of Computer Vision, 47(1-3), April-June
2002. 3

[38] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of inter-
est point detectors. Int. J. Comput. Vision, 37:151–172, June
2000. 5

[39] ShapeLogic. http://www.shapelogic.org. 2

[40] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL(R)
Programming Guide : The Official Guide to Learning
OpenGL(R), Version 2 (5th Edition). Addison-Wesley Pro-
fessional, Aug. 2005. 1, 3, 6

[41] P. Viola and M. J. Jones. Robust real-time face detection. Int.
J. Comput. Vision, 57:137–154, May 2004. 4, 6

[42] VXL. http://vxl.sourceforge.net/. 2, 6

[43] I. Wells, W.M., W. Grimson, R. Kikinis, and F. Jolesz. Adap-
tive segmentation of MRI data. Medical Imaging, IEEE
Transactions on, 15(4):429 –442, aug 1996. 3

[44] B. Zarit, B. Super, and F. Quek. Comparison of five color
models in skin pixel classification. In Proceedings of Inter-
national Workshop on Recognition, Analysis, and Tracking
of Faces and Gestures in Real-Time Systems, pages 58 –63,
1999. 3

[45] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using a
layered representation. ACM Trans. Graph., 23:600–608,
August 2004. 5

