
OpenVL: A Developer-Level Abstraction of Computer Vision

Gregor Miller and Sidney Fels∗

Human Communication Technologies Laboratory
University of British Columbia, Vancouver, Canada

(a) Segmentation (b) Pose Detection (c) Point Correspondence (d) Face Detection

OpenVL provides an abstraction at the task-level over complex computer vision algorithms. The abstraction is based on segments, distinct
regions of the image defined by the developer through properties such as colour or texture (a) which are apparent in the image. Operations
may then be performed on segments, such as pose detection (b), point correspondence (c) or face detection (d). For correspondence, a
description of how segments vary between images is given; for detection, a template is defined for which groups of segments are matched.

Computer vision is a complex field which can be challenging for
those outside its research community to apply in the real world.
Existing vision frameworks and libraries present APIs to users as
lists of specific computer vision techniques (such as detection us-
ing Haar cascades, tracking with particle filters, etc.). Application
of these methods under real-world conditions requires deep algo-
rithmic knowledge in order to (1) select the appropriate algorithm
for the current problem and (2) to provide appropriate parameters to
this algorithm to achieve a reasonable result. Requiring this level of
expertise is a significant barrier to the widespread adoption of com-
puter vision. We propose a task-level abstraction called OpenVL
which hides the details of algorithms behind a powerful interface
flexible enough to provide solutions to a wide variety of vision
problems. The target is to let general developers easily include
vision methods in their applications without requiring a steep and
long learning curve. OpenVL requires developers to have enough
knowledge of a task to accurately describe it using our API. The
developer’s description is analyzed and used to invoke the appro-
priate algorithm(s), customize the parameters and provide a solu-
tion in the specified format. The OpenVL description model covers
many tasks, such as segmentation, matting, correspondence, image
registration, detection, optical flow and tracking. The description is
made up of three parts: the first is a model of the contents of the
image; the second is a description of the process (through a sim-
ple language model [Miller and Fels 2013]); the third is a detailed
description of the individual components of the process.

The image contents are modelled as segments: regions within the
image which are distinct from their surroundings. The definition
of distinct is provided by the developer through properties such as
colour, texture, intensity and blur. These can be chosen based on
knowledge of the problem: e.g. to separate coloured balls or bal-
loons we would choose colour as a the property, but to differentiate
carpet and thread we may choose texture, as shown in Figure (a).
If the chosen problem is segmentation, we use the model to seg-

∗e-mail: {gregor,ssfels}@ece.ubc.ca

ment the image based on the properties. Otherwise, we use this
information as the first component of the problem description, and
move on to the next step. Once segmentation has been defined for
an image, we can apply operations using segments to solve other
problems. For example, we can define a matching operation on
segments which uses a developer-provided set of variances which
describe how the segments vary between images (position, colour,
intensity, size, etc.). If the matching (or image registration) prob-
lem is defined by the developer, the variances are used to select
the correct algorithm: e.g. if the segments’ intensity varies, an
intensity-invariant method would be chosen by OpenVL. The op-
erations may be sequenced together to describe higher-level tasks,
e.g. image registration is a segmentation, correspondence and then
global optimization to find a transform. The sequenced operations
form the second component of the description, and the details (such
as the variances) form the third and final component. When these
are all in place, OpenVL interprets the description and executes a
hidden method to produce the result.

The abstraction is designed to be easy to use, at a level above
specific vision algorithms. This leads to more effective methods
of acceleration: like OpenGL, vendors can provide their own im-
plementations of OpenVL which compete based on power, preci-
sion and performance. For example, we can define the speed of
operation in segments-per-second and detections-per-second, and
use a standardized set of images and problems to evaluate quality.
The quality-to-speed ratio would give some indication of the effec-
tiveness of the implementation. Our reference implementation is
CPU-based, and provides solutions for colour/texture/intensity/size
segmentation, chroma-key matting, strong sparse correspondence,
2D image registration and front/profile face detection. A com-
bined CPU/GPU version is also available for segmentation prob-
lems, and demonstrates the capacity of OpenVL to support hard-
ware acceleration. We are continuously working on adding new
descriptions and expanding the reference implementation for new
problems. More information and development libraries are avail-
able from http://www.openvl.org.

References

MILLER, G., AND FELS, S. 2013. OpenVL: A task-based abstrac-
tion for developer-friendly computer vision. In Proceedings of
the 13th IEEE Workshop on the Applications of Computer Vision
(WACV), WVM’13, IEEE, 288–295.

http://www.openvl.org

